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LATEST PROGRESS OF FAULT DETECTION AND
LOCALIZATION IN COMPLEX ELECTRICAL ENGINEERING

Zheng Zhao — Can Wang — Yagang Zhang — Yi Sun
∗

In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to
quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken.
In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and
localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there
are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and
localization results are still accurate and reliable, which also identifies that the fault detection and localization technology
has strong anti-interference ability and great redundancy.
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1 INTRODUCTION

With the rapid development of power generation in-

dustry in China, the scale of power grid has expanded

rapidly. Meanwhile, owing to the large scale of the grid-

connected renewable power plants such as solar power,
wind power and etc, the implementation and realization

of the west-to-east power transmission, modern power

structure is becoming more and more complex. With

the increasing scale and complexity of power system, the

probability of system fault is also increasing in a geomet-

ric progression. The significant economic losses and social

consequences will take place if it can’t receive timely and
effective treatment when abnormal condition of the de-

vices is happened, so the control and protection system

for power system is facing unprecedented challenges [1–3].

In order to guarantee the reliability and safety of a

complex power system, efficient fault detection and lo-
calization (FDL) schemes are essential to quickly detect

and locate faults so that appropriate and timely correc-

tive mitigating and maintenance actions can be taken.

FDL methods can be classified into three major cat-

egories: model-based, knowledge-based and data-driven

approaches [4–6]. Since faults in complex system are hi-
erarchical, correlation, time delay and uncertainty, the

process is too complex to be modeled analytically and it

is the lack of expert knowledge. The data-driven method

is supposed not to require an explicit or complete model of

the complex system, so it is preferred when system mon-

itoring data for the nominal and degraded conditions is
available. At present, complex power system has estab-

lished a complete Supervisory Control and Data Acqui-

sition (SCADA) system for primary and auxiliary equip-

ments [7–10], which can provide reliable real-time data

for fault detection and localization. On the other hand,

as these model-based, knowledge-based and data-driven

FDL methods have their pros and cons, it is a trend that

these three complementary techniques are usually inte-
grated together to achieve a better performance for com-
plex system [11].

According to complex power systems, we have car-
ried out large numbers of basic researches. In paper [12],
in order to meet the requirements of wide area intelli-
gent control, this paper puts forward a new fault location
scheme based on Bayesian discriminant analysis theory.
And BDA fault detection is proposed to give a partition
for the membership of each element (healthy or faulted),
in which the node status quantities are adopted as basic
data provide by PMU. Paper [13] used mainly pattern
classification technology and linear discrimination prin-
ciple of pattern recognition theory to search for laws of
electrical quantity marked changes. In paper [14], PCA
theory is introduced into the field of fault detection to
locate precisely the fault by mean of the voltage and cur-
rent phasor data from the PMUs. Massive simulation ex-
periments have fully proven that the fault identification
can be performed successfully by PCA and calculation.
In this paper, under the current measurement precision
of PMU, we will put forward a new type of fault detection
and localization technology based on fault factor feature
extraction.

The paper is organized as follows. In Section 2, the
theoretical basis of fault detection and localization is in-
troduced. In Section 3, considering the current measure-
ment precision of PMUs, according to fault factor feature
extraction theory, the fault detection and localization in
complex electric power systems is clarified in detail. Fi-
nally, the paper is concluded in Section 4.

2 THEORETICAL BASIS OF FAULT

DETECTION AND LOCALIZATION

Contemporary science and technology has generated
and is generating so vast amounts of data at unprece-
dented rate and scale, in order to classify these data, fea-
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Fig. 1. Fault detection and localization algorithm flow

ture extraction has become ubiquitous. The purpose of
feature extraction is to reduce the number of features of
patterns and at the same time retain as much as possible
of their discriminatory information [15, 16]. For this rea-
son, a good feature extractor chooses features which are
similar for patterns in the same class and very different
for patterns in different classes. Now let’s introduce the
general process of fault detection and localization based
on fault factor feature extraction [17, 18].

For factor model

Xi = ai1F1 + ai2F2 + · · ·+ aimFm + εi

(i = 1, 2, . . . , p) ,
(1)

we can obtain, the covariance of Xi and Fj is

cov(Xi, Fj) = cov
[

m
∑

k=1

aikFk + εi, Fj

]

=

cov
[

m
∑

k=1

aikFk, Fj

]

+ cov(εi, Fj) = aij . (2)

Suppose the factor loading matrix is A , the sum of
squares of the i-th row’s elements is

h2

i =

m
∑

j=1

a2ij (i = 1, 2, . . . , p) , (3)

which is just the communality of variable Xi .

From the factor model, we can know,

D(Xi) = a2i1D(F1)+ a2i2D(F2)+ · · ·+ a2imD(Fm)+D(εi)

= a2i1 + a2i2 + · · ·+ a2im +D(εi) = h2

i + σ2

i . (4)

The sum of squares of the j -th column’s elements is

g2j =

p
∑

i=1

a2ij (j = 1, 2, . . . ,m) . (5)

As we know, the solution of A is not unique, here the
solution will make the contribution g2

1
=

∑p

i=1
a2i1 of the

first common factor F1 to X reach the maximum, the
contribution g2

2
=

∑p

i=1
a2i2 of the second common factor

F2 to X take second place, . . . , and the contribution of
the m-th common factor Fm to X is the minimum.

The corresponding contributions are in sequence of:

g2
1
≥ g2

2
≥ · · · ≥ g2m . (6)

So, one can get

p
∑

j=1

λijajt − δ1tai1 = 0 ,

(i = 1, 2, . . . , p ; t = 1, 2, . . . ,m)

(7)

δ1t =

{

1 , t = 1 ,

0 , t 6= 1 .
(8)

Left multiplication ai1 and sum i , then

p
∑

j=1

[

p
∑

i=1

λijai1

]

ajt − δ1t

p
∑

i=1

a2i1 = 0 ,

(t = 1, 2, . . . ,m) .

(9)

Here we should take notice of

g2
1
=

p
∑

i=1

a2i1,

p
∑

i=1

λijai1 =

p
∑

i=1

λjiai1 = aji . (10)

p
∑

j=1

aj1ajt − δ1tg
2

1
= 0 (t = 1, 2, . . . ,m) . (11)

Similarly, left multiplication ait with the former formula
and sum t , then

p
∑

j=1

aj1

[

m
∑

t=1

ajtait

]

−

m
∑

t=1

δ1taitg
2

1
= 0

(i = 1, 2, . . . , p) .

(12)

Then, for r∗ij =
∑m

t=1
aitajt ,

p
∑

j=1

r∗ijaj1 = ai1g
2

1
, (i = 1, 2, . . . , p) . (13)

Or expressed as vectors,

(

r∗i1, r
∗

i2, . . . , r
∗

ip

)







a11
...

ap1






= ai1g

2

1

(i = 1, 2, . . . , p) .

(14)
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Fig. 2. Electric diagram of IEEE 39-node system

Fig. 3. Screen plot of all eigenvalues

(R∗ − Ig2
1
)A1 = 0 . (15)

Therefore g2
1

is the biggest eigenvalue of approximate

correlation matrix R∗ , and A1 is the eigenvector that
corresponds to g2

1
.

Obviously, A1 is still an eigenvector that corresponds
to λ∗

1
, and satisfies A′

1
A1 = λ∗

1
t∗′
1
t∗
1
= λ∗

1
= g2

1
.

In order to obtain the rest of m − 1 columns in the

factor loading matrix A , we should introduce the decom-

position formula of spectrum of R∗ ,

R∗ =

p
∑

i=1

λ∗

i t
∗

i t
∗′

i = A1A
′

1
+

p
∑

i=2

λ∗

i t
∗

i t
∗′

i . (16)

Particularly, R∗ can also be decomposed into

R∗ = AA′ = (A1, . . . , Am)







A′

1

...
A′

m






=

m
∑

t=1

AtA
′

t. (17)

That is to say, after A1 is obtained, subtract A1A
′

1
from

R∗ , one can get

R∗ −A1A
′

1
=

m
∑

t=2

AtA
′

t . (18)

In this way, one has solved the factor loading matrix A

from R∗ . Combining the researches in this paper, we have
put forward the following fault detection and localization
algorithm flow, see Fig. 1.

3 FAULT DETECTION AND LOCALIZATION

IN COMPLEX POWER SYSTEM BASED ON

FAULT FACTOR FEATURE EXTRACTION

In order to illustrate the specific procedure of fault de-
tection and localization, let us take IEEE 39-node system
as example. The electric diagram of IEEE 39-node system
has been present in Fig. 2. In the power network struc-
ture, Node-18 appears single-phase short circuit fault. By
BPA simulations, utilizing the actual measurement infor-
mation of corresponding node negative sequence voltages,
we will carry out fault detection and localization of fault
component and non-fault component.
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Table 1. The white Gaussian stochastic noise N(0, 0.0052)

No. 1 2 3 4 5

1 0.0065 0.0078 −0.0080 −0.0029 0.0071
2 0.0012 0.0130 −0.0057 −0.0116 0.0047
3 −0.0013 0.0019 0.0023 0.0009 −0.0062
4 0.0009 0.0081 0.0012 −0.0017 0.0012
5 0.0019 −0.0022 0.0039 −0.0053 0.0059
6 0.0062 −0.0075 −0.0087 0.0011 −0.0077
7 −0.0008 −0.0050 −0.0017 −0.0044 0.0017
8 0.0007 0.0045 −0.0072 0.0023 −0.0004
9 −0.0006 −0.0131 −0.0068 0.0072 0.0021
10 −0.0005 0.0001 −0.0059 −0.0019 −0.0070
11 −0.0059 −0.0027 −0.0004 −0.0041 −0.0088
12 −0.0015 0.0042 0.0065 0.0062 −0.0036
13 0.0032 0.0048 −0.0031 0.0033 −0.0057
14 −0.0010 −0.0031 −0.0018 0.0007 −0.0014
15 0.0023 −0.0046 −0.0035 0.0027 0.0002
16 0.0040 −0.0072 0.0013 0.0038 −0.0028
17 0.0063 0.0029 0.0060 −0.0008 0.0060
18 −0.0037 0.0051 −0.0067 0.0005 −0.0001
19 0.0028 −0.0056 0.0003 0.0016 −0.0106
20 0.0056 −0.0078 −0.0031 0.0050 0.0059
21 0.0102 −0.0066 −0.0051 −0.0013 −0.0099
22 0.0027 0.0030 0.0009 0.0042 −0.0007
23 −0.0050 −0.0074 −0.0028 0.0077 −0.0041
24 0.0032 0.0030 −0.0082 0.0057 0.0061
25 −0.0071 0.0021 −0.0013 −0.0025 −0.0030
26 0.0017 0.0066 0.0011 0.0048 0.0079
27 −0.0044 0.0072 −0.0009 0.0009 −0.0032
28 0.0033 −0.0010 0.0011 −0.0020 −0.0033
29 0.0035 0.0056 0.0036 0.0059 0.0000
30 0.0083 0.0009 −0.0013 0.0097 −0.0024
31 0.0039 −0.0052 0.0022 −0.0005 0.0022
32 0.0000 0.0008 −0.0031 −0.0007 0.0047
33 −0.0056 −0.0008 0.0057 0.0115 0.0009
34 −0.0048 −0.0100 0.0053 0.0052 0.0019
35 0.0045 −0.0012 −0.0024 0.0009 −0.0058
36 −0.0022 −0.0014 −0.0028 0.0035 0.0014
37 −0.0054 −0.0105 0.0025 0.0077 −0.0034
38 0.0002 0.0067 −0.0165 0.0045 0.0001
39 0.0018 −0.0022 0.0032 0.0075 −0.0092

Table 2. The factor score based on fault factor feature extraction

Node Factor 1 Factor 2 Factor 3 Factor 4

Node-1 −0.44395 −0.49280 0.87553 0.24133
Node-2 0.57297 −0.04003 −1.22361 −1.19348
Node-3 1.40257 1.11664 0.38385 0.37991
Node-4 0.06630 −0.21294 −0.09277 −1.03919
Node-5 −0.46603 0.38499 −0.00612 0.50921
Node-6 −0.26291 −0.54509 1.28537 0.42549
Node-7 −0.60332 −0.18063 −0.38719 −0.44588
Node-8 −0.33602 −1.62879 0.31398 0.35989
Node-9 −0.65318 −1.35568 −0.38614 −1.13082
Node-10 −0.39315 0.10149 0.86692 1.20142
Node-11 −0.70409 1.62940 0.18193 0.11525
Node-12 −0.26625 −0.61454 −0.17091 0.42017
Node-13 −0.34271 0.38639 0.24177 −0.02006
Node-14 −0.06004 −0.21223 0.16999 −0.08811
Node-15 0.46920 −0.61847 −0.22849 −0.16308
Node-16 0.68312 0.42142 −0.42142 −0.79325
Node-17 2.26504 0.53895 0.56081 0.76377
Node-18 4.27460 −0.36171 −0.14535 0.21392
Node-19 −0.56137 1.81217 0.77326 −0.32941
Node-20 −0.74520 0.34073 0.00268 −0.50687
Node-21 0.12791 0.86519 1.05526 0.21332
Node-22 −0.22920 −0.02865 −0.57716 −0.23579
Node-23 −0.17407 0.30401 −0.74267 −0.58871
Node-24 0.78669 −0.14123 0.12440 0.98113
Node-25 0.09824 0.44440 −0.09947 0.12809
Node-26 0.55588 1.50461 −0.13367 −0.54253
Node-27 1.27936 0.62832 0.00489 −0.80362
Node-28 −0.02434 0.48766 0.03051 0.26376
Node-29 0.05982 −0.67112 −0.75002 −0.34172
Node-30 −0.59569 0.50746 −1.33860 0.25895
Node-31 −0.83349 −0.40088 0.42127 −0.32255
Node-32 −0.86409 0.02037 0.70302 0.60860
Node-33 −0.54070 −0.66954 −1.40588 0.77547
Node-34 −0.62377 −1.00744 −0.20210 −0.75602
Node-35 −0.69769 0.48405 0.66287 0.53551
Node-36 −0.73154 −0.41790 −0.14615 0.32858
Node-37 −0.37451 0.07010 −0.79960 −1.18108
Node-38 0.29366 −3.48841 0.62058 1.22821
Node-39 −1.40804 1.03975 −0.02157 0.53016

Table 3. The factor score based on fault factor feature extraction

Initial Eigenvalues
Extraction Sums of Squared Rotation Sums of Squared

Factor
Loadings Loadings

Total
% of Cumulative

Total
% of Cumulative

Total
% of Cumulative

Variance % Variance % Variance %

1 3.974 79.483 79.483 3.965 79.306 79.306 3.835 76.694 76.694
2 0.988 19.758 99.241 0.090 1.792 81.098 0.220 4.404 81.097
3 0.016 0.320 99.561 0.008 0.158 81.256 0.005 0.104 81.201
4 0.012 0.236 99.797 0.002 0.047 81.303 0.005 0.102 81.303
5 0.010 0.203 100.000

According to the current measurement precision of
PMU, suppose the standard deviation of voltage vector
is 0.005, and the mean error is 0 [19]. Let us introduce a

white Gaussian stochastic noise N(0, 0.0052), the influ-
ence on IEEE 39-node system is present in Table 1.

By the principal of fault factor feature extraction, the
correlation matrix and the communalities of variables
have been calculated. Based on this, one has obtained
initial eigenvalues, see Table 3. In this place, the feature
extraction method is principal axis factoring. In the to-
tal variance explained, the eigenvalue of the first factor is
3.974, the proportion of variance is 79.483%, of course,

the cumulative proportion of variance is also 79.483%
(close to 80%). The eigenvalue of the second factor is
0.988, the proportion of variance is 19.758%, and the cor-
responding cumulative proportion of variance is 99.241%
(close to 100%). The eigenvalue of the third factor is
0.016, the proportion of variance is 0.320% (it is very
small), and the corresponding cumulative proportion of
variance is 99.561%, and so on. Figure 3 is the screen
plot of these eigenvalues.

Likewise, using principal axis factoring feature extrac-
tion method, one can further solve factor matrix, rotated
factor matrix and factor score coefficient matrix. Finally,
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the factor score results based on fault factor feature ex-
traction are obtained, see Table 2.

According to the ultimate factor score results, the fault
feature is obvious. In the anterior studies, the first factor
corresponding to the cumulative proportion of variance
is 79.483%, the eigenvalue is 3.974. So, the first factor
is our focus. At the same time, let us pay attention to
the factor score of factor 1 in Table 2, there are 39 nodes
altogether, and the score of Node-18 is 4.27460, which is
the biggest one. As we have known, the Node-18 is just
the actual fault component.

In these simulations, although there are disturbances
of white Gaussian stochastic noise, based on fault factor
feature extraction principal, the fault detection and local-
ization results are still accurate and reliable, which also
indicates that the fault detection and localization based
on fault factor feature extraction principal has strong
anti-interference ability and great redundancy.

5 CONCLUSIONS

Feature extraction for classification achieves this di-
mensionality reduction by maximizing a suitably cho-
sen objective function, thus preserving or enhancing the
class separability in the feature domain. Efficient feature
extraction and classification techniques are essential for
analysis of multivariate statistical data [15, 18].

The new type of smart grid can utilize different kinds
of information in a larger scale. In the researches of com-
plex electrical engineering, efficient fault detection and
localization schemes are essential to quickly detect and
locate faults so that appropriate and timely corrective
mitigating and maintenance actions can be taken. In this
paper, under the current measurement precision of PMU,
we have put forward a new type of fault detection and
localization technology based on fault factor feature ex-
traction. The results of massive simulations have con-
firmed, although there are disturbances of white Gaussian
stochastic noise, based on fault factor feature extraction
principal, the fault detection and localization results are
still accurate and reliable. The researches have also iden-
tified the strong anti-interference ability and great redun-
dancy of the fault detection and localization technology
presented in this paper.
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