Journal of ELECTRICAL ENGINEERING, VOL. 65, NO. 1, 2014, 30-36

EVALUATION OF SPECTRAL AND PROSODIC
FEATURES OF SPEECH AFFECTED BY ORTHODONTIC
APPLIANCES USING THE GMM CLASSIFIER

Ji#i P#ibil *— Anna Piibilova " — Daniela Duraékova ™™

The paper describes our experiment with using the Gaussian mixture models (GMM) for classification of speech uttered
by a person wearing orthodontic appliances. For the GMM classification, the input feature vectors comprise the basic and the
complementary spectral properties as well as the supra-segmental parameters. Dependence of classification correctness on
the number of the parameters in the input feature vector and on the computation complexity is also evaluated. In addition,
an influence of the initial setting of the parameters for GMM training process was analyzed. Obtained recognition results
are compared visually in the form of graphs as well as numerically in the form of tables and confusion matrices for tested
sentences uttered using three configurations of orthodontic appliances.

Keywords: spectral and prosodic features of speech, effect of orthodontic appliances, GMM classifier

1 INTRODUCTION

An orthodontic appliance is a mechanical tool for ap-
plication of a pressure to the teeth and their support-
ing tissues to produce changes in the relationship of the
teeth and/or the related osseous structures [1]. There are
two large categories of these appliances: fixed and remov-
able. Typical types of the fixed orthodontic appliances
are braces in which small metal brackets are bonded to
the centre of the teeth together with a metal wire running
horizontally through the brackets to connect them. The
removable appliance consists of active elements which ex-
ert orthodontic forces on the teeth, and retentive elements
which help to retain the appliance in the mouth; finally
a plastic plate holds these two sets of elements together.
Wearing of orthodontic appliances as well as dental pros-
theses causes problems with articulation and speech in-
telligibility [2,3]. In this case, articulation together with
phonation and respiration are affected by physiological
changes similar to the influence of “foreign objects” in
the mouth, investigated in the well-known bite-block ex-
periments [4].

In our previous research, we have tried to evaluate the
determined spectral and prosodic properties of speech
using the spectrograms, ANOVA analysis, and Ansari-
Bradley hypothesis tests applied to the power spectral
density (PSD) values of the spectrograms [5]. The same
method was used for analysis of influence of the fixed and
removable orthodontic appliances on spectral properties
of emotional speech [6] as an alternative to the standard
subjective comparison method the listening tests.

At present, our motivation is the use of the Gaussian
mixture models (GMM) for automatic classification of the

speech uttered by a person wearing orthodontic appli-
ances. Therefore, this paper is focused on description of
an experiment with using the GMM classifier for evalu-
ation of influence of the upper removable plate and the
lower conventional fixed orthodontic brackets and their
combination on the spectral changes of speech in a neu-
tral style.

2 METHOD

Disadvantage of the evaluation method based on the
spectrograms is a necessity of using the same regions of
interest (ROT) for comparison of calculated spectrograms.
Therefore, normalization of the speech signal in the time
domain had to be made first.

Our application of the GMM method to classifica-
tion uses the features representing the spectral proper-
ties and prosodic parameters of the tested speech signal.
These features are determined during pitch-asynchronous
speech analysis performed in the frames of the fixed
length and overlapping. Only statistical properties of
these features are used for GMM evaluation. Thanks to
this approach, the order of the features and the time du-
ration of the analyzed speech frames have no influence
on the correctness of the obtained results and there is no
need for any further speech signal pre-processing to be
applied.

2.1 Determination of speech spectral features
and prosodic properties

Spectral features of speech can be determined in the
course of cepstral analysis [7], during which the absolute
values of the fast Fourier transform (FFT) are calculated
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Fig. 1. Block diagram of spectral and prosodic analysis of the speech signal

from the input samples (after segmentation and weight-
ing by a Hamming window). In the next step, the power
spectrum is computed and the natural logarithm is ap-
plied. Second application of the FFT algorithm gives the
symmetric real cepstrum { ¢, }. The cepstral speech anal-
ysis can be further used for determination of the comple-
mentary spectral features (CSF) [8]. These CSF include
also the harmonics-to-noise ratio (HNR) providing an in-
dication of the overall periodicity of the speech signal.
Specifically, it quantifies the ratio between periodic and
aperiodic components in the signal. Noise at harmonic lo-
cations is typically estimated as an average of the noise
estimates at both sides of the harmonic locations. The
harmonic portion of the spectrum is summed from low
frequencies corresponding to the interval about 70 — 4500
Hz; the noise portion is calculated from high frequencies
corresponding to the interval about 1500 — 4500 Hz. The
spectral centroid (SC) is a centre of gravity of the power
spectrum and it represents an average frequency weighted
by the values of the normalized energy of each frequency
component in the spectrum. The spectral flatness mea-
sure (SFM) can be used to determine the degree of pe-
riodicity in the signal. This spectral feature is calculated
as a ratio of the geometric and the arithmetic mean val-
ues of the PSD. The spectral entropy (SE) as a measure
of spectral distribution quantifies a degree of randomness
of spectral probability density represented by normalized
frequency components of the spectrum. Depending on the
type of the feature, the resulting values are calculated
either from voiced frames of the analyzed utterance or
from both voiced and unvoiced frames. Therefore, deter-
mination of the spectral features is supplemented with
detection of the pitch period L [9] in samples and cal-
culation of the fundamental frequency FO in Hertz —
see block diagram in Fig. 1. The detected pitch period
L is used for preliminary classification of voicing of the
frames. If the value L # 0, the processed speech frame is
determined as voiced, in the case of L = 0 the frame is

marked as unvoiced. For the special purposes, the auxil-
iary speech spectral properties consisting of the formant
positions, their 3 dB bandwidths, and the spectral tilts
are determined [10]. The estimation of the formant fre-
quencies and their bandwidths can be determined directly
from the linear prediction coding (LPC) polynomial com-
plex roots corresponding to the poles of the LPC transfer
function using the Newton-Raphson or the Bairstow al-
gorithm [11].

As regards supra-segmental speech properties, wearing
of the orthodontic appliances has influence only on the
microintonation component which can be supposed to be
a random, band-pass signal described by its spectrum and
statistical parameters. For analysis we use the jitter, the
shimmer, and the relative number of signal zero crossings
(ZCR). The absolute jitter values are calculated as the
average absolute difference between consecutive pitch pe-
riods measured in samples. In the case of the shimmer
measure determination, a period-to-period variability of
amplitudes of a speech signal is used.

2.2 Basic principles of GMM classification

The Gaussian mixture models [12] can be defined as a
linear combination of multiple Gaussian probability dis-
tribution functions (GPDF) of the input data vector z

K
f(fl?):;\/ﬁ eXP(— )7
(1)

where d is the dimension of the GPDF, and K is the
number of these distribution functions in a mixture. The
covariance matrix ¥, the vector of the mean values p,
and the weighting parameters «y must be determined
from the input training data. Using the expectation-
maximization (EM) iteration algorithm [13] the maxi-

(z—p)"S Mz —p)
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Table 1. Used types of values in the basic feature vector set for
GMM classifier

No Feature name Frame type Value type

1 HNR Voiced Mean

2 HNR Voiced Std

3 Spectral tilt Voiced Min

4 Spectral spread All Mean

5 SC Voiced Mean

6 SC Voiced Std

7 SFM Voiced Mean

8 SFM Voiced Std

9 SE All Mean
10 SE All Std

11  Signal ZCR All Median
12 Signal ZCR All Std

13 Jitter Voiced Median
14 Jitter Voiced Rel. max
15 Shimmer All Median
16 Shimmer All Rel. max

mum likelihood function of the GMM is defined as

M K
log L(©|z)= log H Zakpk(l'm’@k)a (2)

m=1 k=1

where PE( ) are the GPDFs, M is the number of the
trained vectors, and the term © = (u,X) represents the
parameters of the Gaussian probability distribution. For
control of the EM algorithm, the Ngmix parameter rep-
resents the number of used mixtures in each of the GMM
models, and the Njter corresponds to the number of iter-
ation steps. The iteration stops when the difference be-
tween the previous and the current probabilities fulfils the
internal condition or the predetermined maximum num-
ber of iterations is reached. In the evaluation phase, the
GMM classifier returns the partial score(T,i) represent-
ing the probability value of the models trained for the
i-th evaluated class, where T is the input vector of the
features obtained from the tested sentence. The resulting
class ¢* is given by its maximum overall probability using
the relation

3)

I" = arg max score(T,1),
1<i<N

where N is the number of all partial scores corresponding
to the number of the classes.

Features vector

3-level Output
classes
Ngmixi 1
(Ti) 7
GMM o S.co.re 2
classifier discriminator \
3
Trained GMM
models

Block diagram of currently developed GMM classifier

3 EXPERIMENTS AND RESULTS

Our experiments were aimed at analysis of:

— influence of the used number of mixtures on GMM
classification error rate, 1 < Nymix < 7,

— influence of the used number of training iterations on
GMM classification correctness, 100 < Njter < 1000,

— influence of different length of the feature vector on
GMM classification error rate, NrgaT € {8, 16,32},

— influence of different length of the feature vector on the
computational time (complexity) of GMM creation,
training, and classification.

For analysis we use the sentences uttered under three
types of conditions:

1. without orthodontic appliances (NO OA),
2. with the lower fixed orthodontic brackets (LF OB),

3. with the upper removable plate and the lower fixed
orthodontic brackets (UP LB).

The speech material was recorded using the Behringer
professional Podcastudio USB with the dynamic cardioid
microphone Ultravoice XM8500 and the mixing console
Xenyx 502 connected to a personal computer through the
UCA200 high-performance audio interface. The collected
speech database consists of 300 records with mean du-
ration of 5 seconds uttered in a neutral speaking style.
Every record consists of five concatenated words with a
similar phonetic sound in Czech but often totally differ-
ent meaning (eg “pes”, “nes”, “ves” — in English: “dog”,
“carry”, “village”) usually used in the rhythm test for
evaluation by the automatic speech recognition systems
(ASR) [14]. These speech records were uttered by a fe-
male speaker with FOa 200 Hz, recorded at 32 kHz,
and subsequently resampled to fs = 16 kHz. Setting of
the parameters for spectral analysis was chosen in cor-
respondence with the speaker’s mean FO in this way:
window length Ly = 180 samples, window overlapping
Lo = 40 samples, and Npppr = 1024 points. In our algo-
rithm, the values of the complementary spectral features
SC and SFM are obtained only from the voiced speech
frames. In the case of the SE and the HNR parameters
the values are determined from the voiced as well as un-
voiced frames. The supra-segmental parameter jitter is
calculated from the voiced frames only, opposite to the
shimmer when both types of the frames are used for de-
termination.

¢
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Fig. 3. Histograms of selected spectral features (HNR, SC, and SE) for different configurations of the orthodontic appliances
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Fig. 4. Histograms of supra-segmental parameters (jitter and shimmer) for different configurations of the orthodontic appliances

At present, the developed GMM classifier has only
one-level structure and three-level score discriminator for
three final output classes as it can be seen in the block
diagram in Fig. 2.

The simple architecture of the classifier expects that
GMM models used for final classification were trained
with speech data in any order from the collected database,
without any pre-processing or auxiliary signal operations
that are usually used in the speech recognition systems
[15]. For practical implementation of the input feature
vector for GMM evaluation, the representative values in

the form of the basic statistical parameters — mean value
and standard deviation (std) — were used for descrip-
tion of the speech basic and auxiliary spectral features.
In the case of the spectral features represented by the real
cepstral coefficients, the histograms of distribution were
used to determine the extended statistical parameters —
skewness and kurtosis. For implementation of the supra-
segmental parameters the statistical types of median val-
ues, range of values, std, and/or relative maximum and
minimum we used in the feature vectors.
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Fig. 7. Comparison of GMM classification results by the confusion matrices, Ngmix = 6, Njter = 600, feature set: (a) — P8, (b) — P16,
and (c) — P32
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Fig. 8. Results of the basic statistical parameters of the CPU times
during the classification phase with Ngpix = 6, feature set: (a) —
P8, (b) — P16, (c) — P32

Three types of vectors with different lengths of Npgar
= 8, 16, and 32 were used for analysis of different num-
ber of values in the feature vector. In the case of the
shortest one with the length of 8 we used the parameters
{1,5,7,9,11, 12, 14, 16} of the original feature vector
with the length Npgar = 16 — see Table 1. The longest

feature set consisting of 32 values includes an extended
selection of the spectral parameters: the skewness and the
kurtosis of the first six cepstral coefficients, the formant
ratios of the first three formant frequencies Fy, Fy, Fj,
the values of all types of complementary spectral features
(HNR, SC, SFM, and SE), and the extended statistical
values of the supra-segmental parameters.

The basic functions from the Ian T. Nabney “Netlab”
pattern analysis toolbox [16] were used for creation of
the GMM models, data training, and classification. The
computational complexity for two algorithmic phases (the
first consisting of model creation and training, and the
second containing classification) was tested using the ob-
tained mean CPU times on the PC with the processor In-
tel(R) 13-2120 at 3.30 GHz, 8 GB RAM, and Windows 7
professional OS.

Histograms of selected spectral features (HNR, SC,
and SE) calculated from the speech signal data for
different configurations of the orthodontic appliances
are shown in Fig. 3, and histograms of chosen supra-
segmental parameters (jitter and shimmer) are presented
in Fig. 4. The obtained results of the experiment with
the GMM classifier describing the influence of the num-
ber of used mixtures on the GMM error rate are shown
in Fig. 5; the results of detailed numerical comparison
are given in Table 2. The results of influence of the used
number of training iterations on the correctness of GMM
classification are presented in Fig. 6 as a bar graph; the
detailed numerical results can be seen in Table 3. The
achieved classification results in the form of the confu-
sion matrices for three configurations of the orthodontic
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Table 2. Influence of Ngnix parameter on the GMM classification
mean error rate in (%) — summary results for all three configurations
of orthodontic appliances; Njtor = 600, feature set P16

Value/Ngmix 1 2 3 4 5 6 7

Minimum 20.02 25.05 25.04 5.26 9.52 1.14 2.28
Maximum 45.01 30.02 38.09 33.85 15.59 15.84 21.03

32.78 27.85 29.36 19.36 11.51 6.58 13.09
12.51 2.58 7.56 16.97 3.03 7.66 12.54

Mean
Std

Table 3. Influence of Nje, parameter on the correctness of GMM
classification in (%) — summary results for all three configurations
of orthodontic appliances; Ngmix = 6, feature set P16

Value/Njer 100 400 600 800 1000 1500

Minimum 89.59 89.44 84.16 89.15 86.41 82.16
Maximum 90.48 91.31 98.86 91.74 94.87 95.26
90.16 90.24 93.42 90.40 88.66 87.80
0.28 0.78 5.89 255 7.12 8.73

Mean
Std

Table 4. Comparison of the GMM classification mean error rate
in (%) for different lengths of the feature vector; Ngmix = 6,
Niger = 600

Mean classification error rate

NOOA LFOB UPLB

NrEaT

8 33.32  20.68 55.89
16 14.28 5.71 25.14
32 9.82 3.66 15.46

Table 5. Comparison of the GMM classification mean error rate
in (%) for different lengths of the feature vector; Ngmix = 6,

Niter = 600
Creation Classification of Summarized
NrEAT o )
and training NO OA LFOB UPLB CPU time
8 469 599 643 675 1108
16 651 605 649 682 1296
32 781 609 652 684 1429

appliances are presented in Fig. 7; the numerical results
of the mean classification error rate are shown in Table 4.
Table 5 summarizes the mean CPU times for different
lengths of the feature vectors (8/16/32 values) calculated
as the duration of creation and training phase summed
with the mean duration of the classification phase aver-
aged over all the tested configurations of the orthodontic
appliances. The results of the basic statistical parame-
ters of the measured CPU times during the classification
phase for different lengths of the feature vector are pre-
sented in the form of box-plot graphs in Fig. 8.
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4 DISCUSSION AND CONCLUSION

The performed experiments have successfully con-
firmed that the chosen conception of on-level architec-
ture of the GMM classifier is correct and the system is
functional and usable for classification of spectral and
prosodic changes in the speech signal produced with dif-
ferent configurations of the orthodontic appliances.

From the analysis of the influence of the initial param-
eters on creation and training of the GMM model follows
that there is a substantial relationship between the num-
ber of the used mixtures and the number of the classes
that are to be recognized — in our case, the types of
the speech signal uttered with/without wearing of the or-
thodontic appliances. The number of the mixtures should
be greater or equal to twice the number of the output rec-
ognized classes. Contrary to it, choice of the number of it-
erations has not great weight when its order is more than
hundreds, therefore the optimum value about six hundred
was chosen. As is documented by histograms of selected
spectral properties and supra-segmental parameters (see
Figs. 3 and 4), obtained values have good differentiation
for all three analyzed configurations of the orthodontic
appliances, so they can be statistically matched and sub-
sequently used for classification based on GMM approach.
For improvement of classification correctness, a compar-
ative experiment with different types of features in the
feature vector should be realized in the future.

From next comparison follows that the obtained GMM
classification error rate using only 8 parameters in the fea-
ture vector gives the mean value of 37 %. However, error
rates for condition UP LB were more than 50 %, what
makes the whole classifier practically unusable. Compar-
ison of the attained mean error rates between classifica-
tion with the help of the feature vector consisting of 32
values and with the basic length of 16 values gave am-
biguous results (see Table 4). While the extension to 32
values brought a little improvement in the overall mean
error rate of 10% when compared to 15 % error rate for
the length of 16 values. On the other hand, the summa-
rized results of the achieved CPU times shown in Table 5
are in correspondence with general expectancy: the max-
imum corresponds to the feature vector of 32 values, the
minimum corresponds to the length of 8 features, and us-
ing the feature vector of 32 values (in comparison with
the basic one consisting of 16 values) causes increasing
of the mean CPU time only by 9%, which is relatively
negligible. Detailed analysis of the basic statistical pa-
rameters (minimum, maximum, and mean values) of the
CPU times during the classification phase show great sim-
ilarity (see Fig. 8), so only the mean values are used for
next comparison.

In near future, we plan to collect a larger database of
speech records from more speakers (male/female), espe-
cially the children or the young, who very often wear the
orthodontic appliances. We would also like to evaluate in-
fluence of the time duration of the orthodontic appliances
wearing upon the spectral changes of speech signals. For
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this purpose, speech recordings of the same person must
be done in the periods of about half a year correspond-
ing also to the time of the vimprovement of the teeth
position.
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