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NEW POSSIBILITIES FOR INVESTIGATION OF THE
TECHNOLOGICAL TEXTURE BASED ON MEASUREMENT

OF ELECTRIC PARAMETERS: THEORETICAL
ANALYSIS AND EXPERIMENTAL VERIFICATION

Tomáš Koźık
∗
— Stanislav Minárik

∗∗ , ∗∗∗

Texture is preferred orientation of crystallites in some polycrystalline materials. Different methods are applied to char-
acterize the orientation patterns and determine the orientation distribution. Most of these methods rely on diffraction.

This paper introduces the principle of a method used for characterization of ceramics texture based on anisotropy of
electrical properties of crystallites in ceramics. The mathematical framework of this method is presented in theoretical part
of our work. In experimental section we demonstrate how the theoretical result could be used to evaluate technology texture
of ceramic material intended for the production of electronic insulators.
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1 INTRODUCTION

The distribution of crystallographic orientations of a
polycrystalline dielectric (texture) has a considerable im-
pact on application properties of the material. The tex-
ture arising in the manufacture process of cylindrical in-
sulators (technological texture) has a detrimental effect
on insulators functionality.

Geometric shape of the particles of plastic component
of ceramic mixture (kaolins and clays), arrangement and
a shape of the end of the extruder, size of the blank
(especially the specific dimension of the section of the
blank) and rheological properties of ceramic mixture for
producing bulk ceramic bodies (insulators) determine the
spatial arrangement and orientation of ceramic particles
of particular components of the ceramic mixture in the
blank. The created arrangement of the particles of partic-
ular components in the blank - the technological texture
- significantly affects the technological properties of the
blank in individual technological operations (cutting, dry-
ing, glazing, firing) and also affects the final properties of
the product, hence the efficiency of the entire production
process.

One of the unfavorable impacts of technological tex-
ture on production quality after firing are various cracks
on the surface and in the volume of the insulator, Fig.1.

Technological texture negatively affects the mechani-
cal strength of the insulator itself after firing, which is a
qualitative parameter of the electrical product - insulator.
Knowledge of the topography of technological texture is
a prerequisite for achieving high efficiency and of produc-
tion quality of VHV insulators.

It is therefore advisable to check the technological tex-
ture of dielectric blank directly in the production process
of insulators.

In general, texture can be investigated by various
quantitative techniques (X-ray diffraction, ESBD, SEM,
etc) and qualitative analysis (polarized microscope, Laue
photography, pole figure technique, etc). All of the labo-
ratory methods mentioned above are not applicable when
we check the technological texture of serial products be-
cause they require quite complicated technical equipment
and procedures. In our work we introduce the principle of
a simple method for the evaluation of axial technological
texture in dielectric material. The main idea is based on
the investigation of electrostatic field axial distribution in
thin cylindrical samples made from dielectric material.

Fig. 1. Crack in the body of insulator

We calculate the electrostatic field distribution in thin
homogeneous cylindrical dielectric sample inserted be-
tween electrodes of the capacitor that has circular elec-
trode with unequal diameter. Especially attention is paid
to axially symmetric field dissipation in the area behind
the edge of the circular electrode with smaller radius.
Generally, the typical case of Sturm-Liouville boundary
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∗∗∗

Institute of Ion-Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328
Dresden, Germany

DOI: 10.2478/jee-2013-0057, Print ISSN 1335-3632, On-line ISSN 1339-309X, c© 2013 FEI STU



Journal of ELECTRICAL ENGINEERING 64, NO. 6, 2013 377

value problem called Bessel differential equation arises in
calculation of the scalar potential with axial symmetry.
After finding the particular solution of this equation us-
ing the Bessel functions the difference of potential of the
electrostatic fields in material is expressed. Consequently
we consider a limit case of extremely slim capacitor and
investigate the decrease of the difference of the poten-
tial in the electrostatic field in the area behind the edge
of smaller electrode by means of the asymptotic Bessel
functions.

Further we propose how to use the result of theoret-
ical analysis for the checking of technological texture in
practice. Experimentally measured axial distribution of
electrostatic potential differs from the theoretical values
in some measurement points. These differences are due
to local variations of dielectric properties of material and
they allow to evaluate the axial technology texture.

2 THEORY

We consider a cylindrical dielectric sample with radius
R1 and very small thickness (h << R2) inserted between
two parallel coaxial metal electrodes with radii R1 > R2 .
Voltage U is applied to electrodes, Fig. 2.

Fig. 2. Experimantal layout

Potential of electrode with radius R1 is ϕ1 and the
potential of electrode with radius R2 is ϕ2 . We are in-
terested in electrostatic field potential ϕ dependence on
distance r from the axis of both plates measured on the
sample surface in area R2 ≤ r ≤ R1 for z = h , according
to Fig. 2.

2.1 The solution of Laplace equation for axially

symmetric electrostatic field

It is possible to consider Laplace equation [1,2] for
charge-free electrostatic field in investigation of scalar
potential distribution in thin cylindrical dielectric media.
The mentioned equation can be written in cylindrical
coordinates

∂2ϕ
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+

1

r

∂ϕ
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∂θ2
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∂2ϕ

∂z2
= 0 (1)

If we assume axial symmetry of homogeneous dielectric
media ∂2ϕ/∂θ2 = 0 and we expect a separable solution

ϕ(r, z) = Φ(r)Y (z) (2)

It results from the Laplace equation that components
Phi(r) and Y (z) must obey next equations
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∂2Y (z)
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= −λY (z) (4)

where λ is a constant that can be positive, negative or
equal to zero.

a) If λ = 0 we can easily find the solution of (1) in the
following form

ϕ0 (r, z) = Kz ln r + L ln r +Mz +N (5)

where K,L,M and N are constants of integration
depending on the boundary conditions.

b) In case if λ > 0 the solution of (4) can be found in the
form

Yp(z) = Y1 sin(kz + α)

where λ = k2, and Y1 − is a constant
(6)

Equation (4) can be transformed to a special case of
modified Bessel differential equation
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∂x
− x2Φ = 0 (7)

where x = kr . Next, the solution of (3) can be deter-
mined

Φp(r) = A2I0(kr) +B2K0(kr) (8)

where A2 and B2 are constants of integration and
I0(kr) and K0(kr) are modified Bessel functions of
zero order [3, 4]
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c) In case of λ < 0 the solution of (4)is

Y (x) = A3e
kz +B3e

−kz (9)

where λ = −k2 , A3 and B3 are constants of integra-
tion. Equation (3) can be transformed to

x2 ∂
2Φ

∂x2
+ x

∂Φ

∂x
+ x2Φ = 0 (10)

with x = kr . Equation (10) is also a special case of
Bessel differential equation [4,5] and the solution of (4)
can be written as

Φ(2)
p (x) = K2I0 (kr) +M2Y0 (kr) (11)
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where where K2 and M2 are constants of integration
and
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are the Bessel functions of zero order. Subsequently,
the general solution of (1) can be found

ϕ(1)(r, z) =Y 0 [A2I0(kr)B2K0(kr)] sin(kz + α)+

+Kz ln r + L ln r +Mz +N, if λ > 0

(12)

ϕ2(r, z) = [K2J0(kr) +M2Y0(kr)] (A3e
kz +B3e

−kz)

+Kz ln r + L ln r +Mz +N, if λ < 0

(13)

2.2 Application of boundary conditions

Let the distribution of scalar potential be determined

by a function φ(I)(r, z) in area 0 6 r 6 R2 , z 6 0 6 h
where this must obey the following conditions

φ(I)(r, 0)− ϕ1, φ(I)(r, h)− ϕ2 (14)

For this reason, function φ(I)(r, z) must be written
as (12) and the following conditions must be satisfied
sin(kh + α) = 0. This means kh + α = nπ , where
n,m = 0,±1,±2, . . . ). There is no reason for the pe-

riodicity of solution φ(I)(r, z). Therefore, it is possible to
take into account α = 0, k = π/h . Boundary conditions
(14) can be satisfied only in case if K = 0 and L = 0.

For that reason φ(I)(r, z) must be written in the following
form

ϕ(I)(r, z) =
[
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Integration constants can be determined by substituting
(15) to (14)

N = ϕ1, M =
ϕ2 − ϕ1

h
=

U

h
(16)

and the distribution of scalar potential in this area takes
the form
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Let the distribution of scalar potential be determined by

function ϕ(II)(r, z) in area R2 6 r 6 R1 , z 6 0 6

h (area II). Function ϕ(II)(r, z) must obey the following
conditions

φ(II)(r, 0)− ϕ1, φ(II)(R2, z) = φ(I)(R2, z) (18)

Therefore, function ϕ(II)(r, z) must be also written in the
form (12). The boundary conditions (18) can be satisfied
only in case if L = 0 and N = ϕ1 . If we consider the
following substitution

M = −K ln r0 (19)

where r0 is constant, the distribution of scalar potential
can be written as follows

ϕ(II)(r, z) =Y 0
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We assume that r >> h , then πr/h >> 1 and arguments
of the Bessel functions are very large. It holds for very
large values of arguments in this case [4,5]
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In addition, function ϕ(II)(r, z) must be decreasing and
A2 = 0 for that reason. Consequently, the distribution of
scalar potential in thin dielectric media inserted between
electrodes is determined by the following functions

φ(I)(r, z) =
U

h
z + ϕ1

ϕ(II)(r, z) =Kz ln

(

r

r0

)

+ ϕ1 (21,22)

After substituting (21) and (22) to second equation (18)
we obtain

K =
U

h ln
(

R2

r0

) (23)

We can find constant r0 based on the fact that total
electric charge Q accumulated on both electrodes is the
same. In the case of thin homogeneous sample we assume

Q = ε

∫

(S)

σdS = ε

R2
∫

0

σ(I) (r)2πrdr =

ε

R2
∫

0
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∫

R2
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(24)

where ε is electric permittivity of the material (ε =

const in homogeneous case) and σ(I), σ(II) , are the charge
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densities on electrodes surface (in area I and area II). The
following applies

σ(I) = εE(I)
z (r, 0) for r ≤ R2

σ(II) = εE(II)
z (r, 0) for R2 ≤ r ≤ R1

(25)

where E
(I)
z ,E

(II)
z are z -components of electrostatic in-

tensity vector in areas I and II respectively. We consider
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If we further consider (24) we obtain
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After integrating (27) we can determine r0
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and K by substituting (28) to (23), consequently
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We can find the distribution of scalar potential in the
area II on the surface of dielectric media (z = h) by
substituting (29) (28) to (22). Next, the voltage measured
on the surface of thin sample can be evaluated by

Uv(r, h) = ϕ(II)(r, h)− ϕ1 ≈
(

1− η ln
r
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)

U

where: η =
1
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(30)

3 EXPERIMENT

Determination of the electrostatic potential distribu-
tion on the surface of the sample was carried out accord-
ing to wiring diagram in Fig. 3.

Fig. 3. Schematic diagram for the investigation of the spatial dis-

tribution of the dielectric permittivity of the material

During the measurement, a sample with a radius R1

is positioned on the surface of conductive electrode. An-

other conductive electrode with a radius R2 is placed in

the axis of symmetry of the measuring system, on the

upper surface of the sample. Between the electrodes, the

testing voltage U is applied. By means of a movable elec-

trode with the end-point the voltage on the surface of

the sample in the direction from the inner to the outer

electrode was measured, with a fixed spacing between the

measurement points.

The model measurement to verify the applicability of

the designed method of determining the difference of the

electrical potential (MEP) in examining the technological

texture was carried out on alumina ceramic matrix with

raw material composition: 30 wt% Kaolin, 15 wt% Clays,

30 wt% Feldspar and 25 wt% Alumina. In operational

terms, the company Netzch moulding press was used to

produce blanks with a diameter of 320 mm. From the

blank, a sample was cut to make the measurement.

Moisture of the pressed mass was about 21 wt% H2O.

The temperature in the extrusion from the molding press

did not exceed the value of the surface temperature of

21 − 22 ◦C. The thickness of sample was 2 mm and ap-

plied voltage U = 1.5 V. The voltage Uv was measured

in eight directions (I, II,...VIII) which were rotated by

45 deg. Measurements were carried out on the surface of

the sample by using the scheme illustrated in Fig.3. Radii

of the electrodes were R1 =8,5 mm and R2 = 160 mm.

Experimental data were compared with the theoretical

result (30). The obtained result is shown in Fig.4 .

4 DISCUSSION

The quality and efficiency of the technology of elec-

trical insulators for very high voltage (VHV) depend on

the characteristics of the used ceramic material. Many

authors have dealt with the evaluation of the texture and

dielectric properties of materials in the past [6-12]. In our

work we scanned local changes of dielectric properties of

a thin ceramic sample by means of the measurement of

distribution of scalar electric potential on the sample sur-

face. The observed discrepancies between theoretical and

measured values are caused by the local inhomogeneities

in the material structure. It should be noted that our

theoretical result (30) was obtained for the homogeneous

sample under the simplifying assumptions. However, the

character of dependence (30) is significant for practical

use.

In view of the observed homogeneity of the blank

(untreated material) structure, the measurement results

show a high degree of orientation of particles of the ce-

ramic mass plastic components across the blank. We as-

sume that the observed deviations in electrical potential

values are an reflecting the rearranging of the texture-

making particles. The created texture and homogeneous
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environment in the volume of the blank should lead to
the low reject of the produced insulators due to the pres-
ence of cracks or reducing their mechanical strength. This
assumption was confirmed in technology of insulators pro-
duction. The manufactured series of insulators were char-
acterized by low levels of the rejection. The same conclu-
sion was also obtained by method of an analysis of di-
mensional changes of the samples before and after firing,
which were collected from the profile of the blank from
the directions in which the values of the difference of the
electric potential were measured.

Fig. 4. Discrete symbols - data measured in different directions
along diameter of the cylindrical sample. Solid line - theoretical

result

5 CONCLUSIONS

By a model experiment of measuring the difference of
the electrical potential on the surface of the cross section
of blanks for the production of VHV insulators, suitability
and validity of using the designed method for determin-
ing the technological texture in the blanks was demon-
strated. Analysis of the obtained results confirmed the
perspective of the designed method for monitoring and
evaluating technological texture of materials prepared by
technologies similar to production technologies of electri-
cal porcelain - VHV insulators.

The starting point for the preparation of a model ex-
periment was a theoretical solution of investigation of
the spatial distribution of the dielectric permittivity of
the material placed between two conductive electrodes
(plates) with different diameters connected to the volt-
age U .
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stanovenie technologickej textúry výliskov), SILIKA No. 5–6
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