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ON SOME STRATEGIES FOR COMPUTER SIMULATION OF

THE WAVE PROPAGATION USING FINITE DIFFERENCES

II. MULTI–DIMENSIONAL FDTD METHOD

L’ubomı́r Šumichrast
∗

Some strategies used in the computer simulation of wave phenomena by means of finite differences in time-domain
(FDTD) method are reviewed and discussed here. It is shown that the wave equation in its discretised form possesses
different properties in comparison with the true differential formulation. In this part the issues of stability and numerical
dispersion for two- and three-dimensional case of wave propagation in homogeneous space are thoroughly investigated.
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1 INTRODUCTION

As discussed in part one of this tutorial review [1]

the computer simulation of electromagnetic wave prop-

agation is a subject of standing interest. The approx-

imation of derivatives by finite differences in Maxwell

equations is one of the most transparent and straight-

forward methods used. The fundamentals have been laid

down in the seminal work of Yee [2] on the explicit finite-

differences-in-time-domain (FDTD) method for vectorial

wave components in three dimensions. The staggered

three-dimensional discretisation grid introduced for three

dimensional Maxwell equations in [2] and eventually its

modifications [3] remained preserved in all other meth-

ods up to now. The main drawback — the conditional

stability of the explicit FDTD method — has been over-

come by introducing implicit Crank-Nicolson formulation

of pertaining eqautions. Since the solution of the full set of

equations for Crank-Nicolson algorithm is far beyond the

posibilities of common computing machinery the approx-

imate methods have been developed — the alternating-

directions-implicit (ADI) approach [4–6] and the Crank-

Nicolson-split-step (CNSS) approach [7, 8]. Character of

both these approximations [9] will be shown. Both were in

the last decade treated in numerous papers, the interested

reader can easily find on himself, and their properties

thouroughly investigated. In this tutorial paper the sub-

stantial features of the classical Yee FDTD method, to-

gether with one interesting modification of the discretisa-

tion grid in order to enlarge permissible time-step length

[2] will be reviewed and analysed from the point of view

of the power conservation and the numerical dispersion.

2 ELECTROMAGNETIC WAVE

PROPAGATION IN HOMOGENEOUS SPACE

Multidimensional wave phenomena of electromagnet-
ics are represented by the electromagnetic waves propa-
gating in space. Electromagnetic fields in source-free ho-
mogeneous, isotropic and lossless media are described by
the Maxwell equations

ε
∂E(r, t)

∂t
= rotH(r, t) ,

µ
∂H(r, t)

∂t
= − rotE(r, t) ,

(1)

for the electric and magnetic field intensities E and H ,
where r is the radius vector and ε and µ are the per-
mittivity and permeability of the medium. The vectorial
quantities in the Cartesian coordinates have the com-
ponents, E = {Ex, Ey, Ez} , H = {Hx, Hy, Hz} and
r = {x, y, z} is the radius vector.

The full three-dimensional set of vectorial equations
(1) represented in six scalar equations consists of two
triples of equations, first for {Ex, Ey , Ez} and the second
for {Hx, Hy, Hz} , the first and the last equation are

ε
∂Ex(x, y, z, t)

∂t
=

=
∂Hz(x, y, z, t)

∂y
− ∂Hy(x, y, z, t)

∂z
,

(2)

µ
∂Hz(x, y, z, t)

∂t
=

=
∂Ex(x, y, z, t)

∂y
− ∂Ey(x, y, z, t)

∂x
.

(3)

The other four equations can be obtained by the cyclic
permutation of all indices {x, y, z} either in (2) or in (3).
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Fig. 1. Configuration of the staggered grid of Yee [2]

Fig. 2. Configuration of the two-dimensional Yee grid

Fig. 3. Discretisation configuration accordingly [3]

In the two-dimensional case, when both E and H

are independent from eg y , ie E = E(x, z, t), H =
H(x, z, t), the six equations of the type (2) and (3) lead
to two independent triples of equations, the first one for
the transversal electric (TE) type of the field

µ
∂Hy

∂t
=

∂Ez

∂x
− ∂Ex

∂z
,

ε
∂Ez

∂t
=

∂Hy

∂x
,

ε
∂Ex

∂t
=−∂Hy

∂z
,

(4)

and the second one for the transversal magnetic (TM)
type of the field

ε
∂Ey

∂t
=

∂Hx

∂z
− ∂Hz

∂x
,

µ
∂Hz

∂t
=−∂Ey

∂x
,

µ
∂Hx

∂t
=

∂Ey

∂z
,

(5)

respectively.

From (1) one obtains two wave equations

µε
∂2

H(r, t)

∂t2
= ∇2

H(r, t)− grad divH(r, t) ,
(6)

µε
∂2

E(r, t)

∂t2
= ∇2

E(r, t)− grad divE(r, t) . (7)

For a simple case of divH(r, t) = 0 and divE(r, t) =
0 the wave equation for any Cartesian component of vec-
tors E and H takes the form

1

c2
∂2f(r, t)

∂t2
=

∂2f(r, t)

∂x2
+

∂2f(r, t)

∂y2
+

∂2f(r, t)

∂z2
. (8)

The general solution of (8) takes the form of a plane
wave f(r, t) = f(ct ∓ n · r) propagating either in the
positive or in the negative direction of the unit vector n

and c = (µε)−1/2 .

3 DISCRETISATION OF THE

MAXWELL EQUATIONS

The discrete values of {Ex, Ey, Ez , Hx, Hy, Hz} are
given, as depicted in Fig. 1, on the spatially staggered
grid, designed by Yee [2]. The E -components are centered
on the edges of the cube while the H -components are
placed in the middle of the faces. In addition the E -
components and the H -components are staggered along
the time axis too, analogously to Fig. 1a in [1], ie the
calculations are performed intermittently in discrete time

instants E ⇒
(

n+ 1

2

)

∆t , H ⇒ n∆t . The calculation is
thus performed for the values denoted as

Ex|n+
1

2

i+ 1

2
,j,m

=Ex

(

(i+ 1

2
)∆x, j∆y,m∆z, (n+ 1

2
)∆t

)

, (9)

Hx|ni,j+ 1

2
,m+

1

2

=Hx

(

i∆x, (j +
1

2
)∆y , (m+ 1

2
)∆z , n∆t

)

,

(10)

as well as for the values of other components: Ey|ni,j+ 1

2
,m

,

Ez |n+
1

2

i,j,m+ 1

2

Hy|ni+ 1

2
,j,m+ 1

2

, Hz |ni+ 1

2
,j+ 1

2
,m

– positioned on

edges and faces as given by the cyclic permutation of 1

2

in the spatial indices.
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For the sake of simplicity, in what follows the nor-
malised quantities hx,y,z = Hx,y,z

√
Z0 , and ex,y,z =

Ex,y,z/
√
Z0 are introduced, where Z0 =

√

µ/ε is the
wave impedance of homogeneous media. The discretised
equations (2) and (3) then read

ex|n+
1

2

i+ 1

2
,j,m

−ex|n−
1

2

i+ 1

2
,j,m

= by
(

hz|ni+ 1

2
,j+ 1

2
,m−hz|ni+ 1

2
,j− 1

2
,m

)

− bz
(

hy|ni+ 1

2
,j,m+ 1

2

− hy|ni+ 1

2
,j,m−

1

2

)

, (11)

hz|n+1

i+ 1

2
,j+ 1

2
,m
−hz|ni+ 1

2
,j+ 1

2
,m=by

(

ex|n+
1

2

i+ 1

2
,j+1,m

−ex|n+
1

2

i+ 1

2
,j,m

)

− bx
(

ey|n+
1

2

i+1,j+ 1

2
,m

− ey|n+
1

2

i,j+ 1

2
,m

)

, (12)

where bx,y,z = c∆t/∆x,y,z are the Courant numbers
along the respective axis. The equations analogous to (11)
and (12) for the other four components are obtained by a
cyclic permutation of component indices (x, y, z) and by

a cyclic permutation of 1

2
in the spatial indices (i, j,m).

The in-time forward-marching algorithm provided by
(11) and (12) proceeds in a “leapfrog” way, ie the val-

ues ex,y,z|n+
1

2 , hx,y,z|n+1 , ex,y,z|n+
3

2 , hx,y,z|n+2 , etc, in
respective time layers are subsequently directly obtained
from the values in two preceding time layers.

Since we want to show the principal properties of the
respective algorithms, for the sake of simplicity in what
follows the analysis will be mostly limited to the two-
dimensional formulation only. For the TE-wave having

the components hy|ni+ 1

2
,m+ 1

2

, ex|n+
1

2

i+ 1

2
,m

, ez|n+
1

2

i,m+ 1

2

one ob-

tains the formulae

hy|n+1

i+ 1

2
,m+

1

2

− hy|ni+ 1

2
,m+ 1

2

= bx
(

ez|n+
1

2

i+1,m+
1

2

− ez|n+
1

2

i,m+
1

2

)

− bz
(

ex|n+
1

2

i+ 1

2
,m+1

− ex|n+
1

2

i+ 1

2
,m

)

, (13)

ez|n+
1

2

i,m+ 1

2

−ez|n−
1

2

i,m+ 1

2

= bx
(

hy|ni+ 1

2
,m+ 1

2

−hy|ni− 1

2
,m+ 1

2

)

, (14)

ex|n+
1

2

i+ 1

2
,m

− ex|n−
1

2

i+ 1

2
,m

= −bz
(

hy|ni+ 1

2
,m+ 1

2

− hy|ni+ 1

2
,m−

1

2

)

,

(15)

while for the TM-wave having the components ey|n+
1

2

i,m ,

hx|ni,m+ 1

2

, hz|ni+ 1

2
,m

one arrives to

ey|n+
1

2

i,m − ey|n−
1

2

i,m = bz
(

hx|ni,m+ 1

2

− hx|ni,m−
1

2

)

− bx
(

hz|ni+ 1

2
,m − hz|ni− 1

2
,m

)

, (16)

hz|n+1

i+ 1

2
,m

− hz|ni+ 1

2
,m = bx

(

ey|n+
1

2

i+1,m − ey|n+
1

2

i,m

)

, (17)

hx|n+1

i,m+ 1

2

− hx|ni,m+
1

2

= bz
(

ey|n+
1

2

i,m+1
− ey|n+

1

2

i,m

)

. (18)

Besides the Yee’s staggered grid there are also different
possible discretisation configurations possible. One pro-
posed in [3] is a modification of Yee’s grid depicted in
Fig. 2 for the TE wave, where, as seen from Fig. 3, the

discretisation points for Ex and Ez are half-step shifted
into corners of the basic cell, ie both Ex as well as Ez are
defined in the same grid points. Then we again have the
forward-marching explicit algorithm for the normalised

grid values hy|ni+ 1

2
,m+

1

2

, ex|n+
1

2

i,m , ez|n+
1

2

i,m and centered

difference equations expressed by

2
(

hy|n+1

i+ 1

2
,m+

1

2

− hy|ni+ 1

2
,m+ 1

2

)

=

bx
(

ez|n+
1

2

i+1,m − ez|n+
1

2

i,m + ez|n+
1

2

i+1,m+1
− ez|n+

1

2

i,m+1

)

− bz
(

ex|n+
1

2

i,m+1
− ex|n+

1

2

i,m + ex|n+
1

2

i+1,m+1
− ex|n+

1

2

i+1,m

)

, (19)

2
(

ez|n+
1

2

i,m − ez|n−
1

2

i,m

)

= bx
(

hy|ni+ 1

2
,m−

1

2

− hy|ni− 1

2
,m−

1

2

+ hy|ni+ 1

2
,m+

1

2

− hy|ni− 1

2
,m+

1

2

)

(20)

2
(

ex|n+
1

2

i,m − ex|n−
1

2

i,m

)

= −bz
(

hy|ni− 1

2
,m+ 1

2

− hy|ni− 1

2
,m−

1

2

+ hy|ni+ 1

2
,m+ 1

2

− hy|ni+ 1

2
,m−

1

2

)

. (21)

4 POWER CONSERVATION AND NUMERICAL

DISPERSION OF THE EXPLICIT SCHEMES

The von Neumann stability analysis as elucitaded in
[1] leads in the two dimensional case for eg time-harmonic
plane TE-wave to

ex|n+
1

2

i+ 1

2
,m

= ex0ξ
n+ 1

2 exp
{

jkx(i +
1

2
)∆x

}

exp(jkzm∆z) ,

ez|n+
1

2

i,m+ 1

2

= ez0ξ
n+ 1

2 exp(jkxi∆x) exp
{

jkz(m+ 1

2
)∆z

}

,

hy|ni+ 1

2
,m+

1

2

=hy0ξ
nexp{jkx(i+ 1

2
)∆x}exp{jkz(m+ 1

2
)∆z}

with ξ = exp(−jω∆t) and the wave number k =
√

k2x + k2z .

After inserting into (13), (14) and (15) one obtains the
equation

ξ2 − 2
[

1− 2(A2
x +A2

z)
]

ξ + 1 = 0 , (22)

where
Ax = bx sin(

1

2
kx∆x) , (23)

Az = bz sin(
1

2
kz∆z) , (24)

with the solution

ξ = [1− 2(A2
x +A2

z)]− j
√

1− [1− 2(A2
x +A2

z)]
2 . (25)

In order to achieve the power conservation of the algo-
rithm the expression under the square root sign must be
positive leading thus to the condition

A2
x +A2

z ≤ 1 . (26)
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Due to the sampling theorem k∆|x,z = π holds for the
maximum representable values of the wavenumbers kx ,
kz with the sampling intervals ∆x , ∆z , and therefore
Ax,z|max = c∆t/∆x,z , leading to the ultimate power con-
servation condition (CFL condition (59) in [1] in two di-
mensions)

c∆t

√

∆−2
x +∆−2

z ≤ 1, or
√

b2x + b2z ≤ 1 . (27)

It is noteworthy to mention that for the aspect ratio
tanα = ∆z/∆x and the diagonal of the discretisation cell

d =
√

∆2
x +∆2

z , (27) can be written as c∆t <
1

2
d sin 2α ,

giving the maximum value c∆t|max = d/2 = ∆/
√
2 for

the aspect ratio one, ie ∆ = ∆x = ∆z . On the other hand
for ∆x ≪ ∆z , or ∆z ≪ ∆x , the maximum value is either
c∆t|max ≈ ∆x/2, or c∆t|max ≈ ∆z/2. The maximum
permitted time-step ∆t|max thus generally depends also
on the geometrical configuration of the discretisation cell.

If the CFL condition is met (25) yields for ω∆t with
ω∆t = −phase(ξ)

ω∆t = arccos[1− 2(A2
x +A2

z)] , (28)

or written in a more familiar form

sin2(1
2
ω∆t)

c2∆2
t

=
sin2(1

2
kx∆x)

∆2
x

+
sin2(1

2
kz∆z)

∆2
z

. (29)

The phase velocity vp(k) = ω(k)/k and the group ve-
locity vg(k) = dω(k)/dk of the simulated wave propaga-
tion

vp(k) =
1

k∆t
arccos[1− 2(A2

x +A2
z)] , (30)

vg(k) =

c
Ax cos(

1

2
kx∆x) cos η +Az cos(

1

2
kz∆z) sin η

√

A2
x +A2

z

√

1− (A2
x +A2

z)
, (31)

are not constant, they differ from the physical phase
and group velocity vp = vg = c , and depend not only

on the wavenumber k , k =
√

k2x + k2z , kx = k cos η ,
kz = k sin η , but also on the direction of the wave propa-
gation given by the angle η , leading thus to the artificial
numerical dispersion given by (30) and (31).

Notice that the wavenumbers kx , kz can have only
discrete values too, given by kx|i = (2πi)/(Mx∆x),
kz|m = (2πm)/(Mz∆z), where Mx × Mz is the num-
ber of discretisation points in the computational window
(0, xmax) × (0, zmax), xmax = Mx∆x , zmax = Mz∆z .
The discrete set of permissible wave vectors is given
by k|i,m =

(

±kx|i,±kz|m
)

, i = 1, 2, . . .Mx/2, m =

1, 2, . . .Mz/2 since the highest representable wavenum-
ber in respective direction is given by kx,z|max = π/∆x,z .
There are thus exactly Mx × Mz permissible discrete
propagation directions and any wave distribution in space
can consist only of this discrete spectrum of plane waves.

This set of k|i,m vectors in fact represents a reciprocal
lattice pertaining to the discretisation grid.

For the discretisation scheme as proposed by Bi et al
in [3] the von Neumann analysis leads instead of (25) to

ξ2 − 2
{

1− 2[A2
x cos

2(1
2
kz∆z)+

+A2
z cos

2(1
2
kx∆x)]

}

ξ + 1 = 0 ,
(32)

giving the condition of power conservation in the form

A2
x cos

2(1
2
kz∆z) +A2

z cos
2(1

2
kx∆x

)

≤ 1 . (33)

The maximum value in (33) is reached for kx,y∆x,y = π/2
leading to the less stringent condition on ∆t

c∆t

√

∆−2
x +∆−2

z ≤ 2 (34)

and of course to the different numerical dispersion prop-
erties given by

ω∆t = arccos
{

1−2[A2
x cos

2(1
2
kz∆z)+A2

z cos
2(1

2
kx∆x)]

}

.

(35)

Notice the difference in phase velocities, the simulation
using the grid in Fig. 3. leads for the same kx,z∆x,z and
bx,z = c∆t/∆x,z to lower phase velocity in simulated
wave propagation than the grid in Fig. 2.

5 THE FULL IMPLICIT

FORMULATION: CN–FDTD METHOD

In the matrix notation (1) reads

ε
∂

∂t
E = G ·H ,

µ
∂

∂t
H = −G · E ,

(36)

where E = [Ex, Ey, Ez]
⊤ and H = [Hx, Hy, Hz]

⊤ are
column vectors of the field components and G is given as

G = G1 − G2 =





0 −∂/∂z ∂/∂y
∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0



 , (37)

where

G1=





0 0 ∂/∂y
∂/∂z 0 0
0 ∂/∂x 0



 ,

G2=





0 ∂/∂z 0
0 0 ∂/∂x

∂/∂y 0 0



 .

(38)

Combining normalised vectors E and H into one vector

f = [ex, ey, ez, hx, hy, hz]
⊤ , one arrives to the equation

c−1 ∂

∂t
f = D · f , (39)
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where D is an 6× 6 matrix

D =

[

0 G1 − G2

G2 − G1 0

]

, (40)

that can be written also in the form

D = D1 +D2 = D12 −D21 (41)

where

D1 =

[

0 G1

−G1 0

]

, D2 =

[

0 −G2

G2 0

]

, (42)

D12 =

[

0 G1

G2 0

]

, D21 =

[

0 G2

G1 0

]

. (43)

Discrete Crank-Nicolson formulation of (39) with re-
spect to the time derivative yields

f
n+1 − f

n

c∆t
= D · f

n+1 + f
n

2
. (44)

After the discretisation of the spatial variables in (44)
using the Crank-Nicolson algorithm, one arrives to the
set of six difference equations, of which the first and the
last one in concise notation [8] read

2
(

ex|n+1− ex|n
)

= c∆t

(

δyhz|n+1+

δyhz|n− δzhy|n+1− δzhy|n
)

(45)

2
(

hz|n+1− hz|n
)

= c∆t

(

δyex|n+1+

δyex|n− δxey|n+1− δxey|n
)

(46)

and the other four are obtained by cyclic permutation of
indices in (45) and (46).

The first-order difference operator δ in above formulas
is defined for the integer indices using the forward differ-
ences and for the half-integer indices using the backward
differences, ie

δan =
a|n+1 − a|n

∆
, δan+ 1

2

=
a|n+ 1

2

− a|n− 1

2

∆
. (47)

The second order operator is defined using the central
differences

δ2ai =
a|i+1 − 2a|i + a|i−1

∆2
, (48)

δ2ai+ 1

2

=
a|i+ 3

2

− 2a|i+ 1

2

+ a|i− 1

2

∆
. (49)

Thus the equations (45) and (46) in fact mean

2
(

ex|n+1

i+ 1

2
,j,m

−ex|ni+ 1

2
,j,m

)

=by

(

hz|n+1

i+ 1

2
,j+ 1

2
,m
−hz|n+1

i+ 1

2
,j− 1

2
,m

+ hz|ni+ 1

2
,j+ 1

2
,m − hz |ni+ 1

2
,j− 1

2
,m

)

− bz

(

hy|n+1

i+ 1

2
,j,m+

1

2

− hy|n+1

i+ 1

2
,j,m−

1

2

+ hy|ni+ 1

2
,j,m+ 1

2

− hy|ni+ 1

2
,j,m−

1

2

)

. (50)

2
(

hz|n+1

i+ 1

2
,j+ 1

2
,m

− hz|ni+ 1

2
,j+ 1

2
,m

)

=by

(

ex|n+1

i+ 1

2
,j+1,m

−ex|n+1

i+ 1

2
,j,m

+ex|ni+ 1

2
,j+1,m−ex|ni+ 1

2
,j,m

)

−bx

(

ey|n+1

i+1,j+ 1

2
,m

− ey|n+1

i,j+ 1

2
,m

+ ey|ni+1,j+ 1

2
,m − ey|ni,j+ 1

2
,m

)

. (51)

Note that in (50) and (51) in contrast to (11) there is
no staggering of the discrete values along the time axis.

If there are M spatial discretisation points along each
axis x , y , and z , the solution of six unknowns from
(50) (and subsequent five equations) requires for each

simulation step inversion of the
(

6M3 × 6M3
)

sparse

matrix. This is usually already for a moderate number
of sampling points M (eg M ≈ 50) not realizable task
on the common computing machinery.

6 THE APPROXIMATE IMPLICIT

FORMULATION: ADI– FDTD METHOD

Equation (44) can be put in the following form

{

I− c∆t

2
(D1+D2)

}

f
n+1 =

{

I+
c∆t

2
(D1+D2)

}

f
n, (52)

which can after some calculation be re-cast into the fol-
lowing form (see eg [7])

{

I− c∆t

2
D1

}{

I− c∆t

2
D2

}

f
n+1 − c2∆2

t

4
D1 ·D2f

n+1 =

{

I+
c∆t

2
D2

}{

I+
c∆t

2
D1

}

f
n − c2∆2

t

4
D2 ·D1f

n . (53)

Solving the full system of implicit equations (44), (52),
(53) is far beyond the capabilities of common computa-
tional machinery. Therefore after having neglected last
terms (of second order smallness) on the RHS and LHS
of (53), one can split the resulting approximate equation

{

I− c∆t

2
D1

}{

I− c∆t

2
D2

}

f
n+1 =

=
{

I+
c∆t

2
D2

}{

I+
c∆t

2
D1

}

f
n

(54)

into two subsequent steps

{

I− c∆t

2
D2

}

f
∗ =

{

I+
c∆t

2
D1

}

f
n, (55)

{

I− c∆t

2
D1

}

f
n+1 =

{

I+
c∆t

2
D2

}

f
∗, (56)

where f
∗ denotes the intermediate values after the first

substep. As can be shown, f
∗ approximates the value

f
n+1/2 and therefore it is often denoted in this way. This

procedure is called Alternating-Directions-Implicit (ADI)
FDTD method.
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If there are M spatial discretisation points along each
axis x , y , and z , then the algorithm for (55) and (56) can
be organized in such a way that the full step ∆t requires
the inversion of the three tri-diagonal M × M matrices
twice, ie for each half-step. As already mentioned the
exact solution (52) requires inversion of the

(

6M3×6M3
)

sparse matrix. The difference in computational intensity
between the problems characterised by (6M3 × 6M3)
matrix and by three tri-diagonal (M × M) matrices is
immense.

The first and the last equation of the set of six equa-
tions (55) for the first half-step after the spatial discreti-
sation read

2
(

ex|n+
1

2 − ex|n
)

= c∆t

(

δyhz|n+
1

2 − δzhy|n
)

, (57)

2
(

hz|n+
1

2 − hz|n
)

= c∆t

(

δyex|n+
1

2 − δxey|n
)

. (58)

The first and the last equation of the set of six equations
(56) for the second half-step read

2
(

ex|n+1− ex|n+
1

2

)

= c∆t

(

δyhz |n+
1

2 − δzhy|n+1
)

, (59)

2
(

hz|n+1− hz|n+
1

2

)

= c∆t

(

δyex|n+
1

2 − δxey|n+1
)

. (60)

The organisation of the algorithm into a tridiagonal
matrix proceeds for the first half-step through the substi-

tution of hz|n+
1

2 from (58) into (57)

[

4− c2∆2
t δ

2
y

]

ex|n+
1

2 =

4ex|n + 2c∆t

[

δyhz|n − δzhy|n
]

− c2∆2
t δyδxey|n (61)

and the substitution of ex|n+
1

2 from (57) into (58)

[

4− c2∆2
t δ

2
y

]

hz|n+
1

2 =

4hz|n + 2c∆t

[

δyex|n − δxey|n
]

− c2∆2
t δzδyhy|n. (62)

For the second half step the similar procedure yields

[

4− c2∆2
t δ

2
z

]

ex|n+1 = 4ex|n+
1

2+

2c∆t

[

δyhz

∣

∣

n+ 1

2 − δzhy|n+
1

2

]

− c2∆2
t δzδxez|n+

1

2 (63)

and

[

4− c2∆2
t δ

2
x

]

hz|n+1 = 4hz|n+
1

2+

2c∆t

[

δyex|n+
1

2 − δxey|n+
1

2

]

− c2∆2
t δxδzhx|n+

1

2 . (64)

From the set of six equations for the first half step only

the first three of type (61) for ex|n+
1

2 , ey|n+
1

2 , ez|n+
1

2

have to be solved since having obtained these values the

values for hx|n+
1

2 , hy|n+
1

2 , hz |n+
1

2 can be easily obtained
from the second three equations of type (58).

Analogously for the second half step only the solu-
tion of the last three equations of type (64) for hx|n+1 ,

hy|n+1 , hz|n+1 is required and ex|n+1 , ey|n+1 , ez|n+1

are determined from first three equations of type (59).

The calculation can be further re-organised in a
“leapfrog” way [10]. When the direction of the time axis

in (61) is reversed around the point n , ie n+ 1

2
⇒ n− 1

2
,

c∆t ⇒ −c∆t , and subtracting the result from (61) one
arrives at the “leapfrog” algorithm [10]

[

4− c2∆2
t δ

2
y

]

ex|n+
1

2 =
[

4− c2∆2
t δ

2
y

]

ex|n−
1

2 + 4c∆t

[

δyhz|n − δzhy|n
]

(65)

Similarly the reversal of the time axis in (64) around

the point n + 1

2
, ie n + 1 ⇒ n , c∆t ⇒ −c∆t , and

subtracting the result from (64) gives

[

4− c2∆2
t δ

2
x

]

hz|n+1 =
[

4− c2∆2
t δ

2
x

]

4hz|n + 4c∆t

[

δyex|n+
1

2 − δxey|n+
1

2

]

. (66)

The equations for other components ey|n+
1

2 and

ez|n+
1

2 are obtained by cyclic permutation in (65) and

similarly from (66) the equations for hx|n+1 and hy|n+1 .

As pointed out in [10] an additional benefit is the
absence of the mixed difference terms in (65) and (66)
on the contrary to (61) through (64), where the terms
δyδxey|n , δzδyhy|n , δzδxez|n , δxδxhx|n occur. Observe
also that in the limit c∆t → 0 the implicit equations
(65) and (66) approach the explicit equations (11) and
(12).

In fact (65) actually means

b2yex|
n+ 1

2

i+ 1

2
,j+1,m

− 2
(

2 + b2y
)

ex|n+
1

2

i+ 1

2
,j,m

+ b2yex|
n+ 1

2

i+ 1

2
,j−1,m

= b2yex|
n− 1

2

i+ 1

2
,j+1,m

− 2
(

2 + b2y
)

ex|n−
1

2

i+ 1

2
,j,m

+ b2yex|
n− 1

2

i+ 1

2
,j−1,m

− 4by
(

hz|ni+ 1

2
,j+ 1

2
,m − hz|ni+ 1

2
,j− 1

2
,m

)

+ 4bz
(

hy|ni+ 1

2
,j,m 1

2

− hy|ni+ 1

2
,j,m−

1

2

)

, (67)

and (66) actually means

b2xhz|n+1

i+ 3

2
,j+ 1

2
,m
−2

(

2+b2x
)

hz|n+1

i+ 1

2
,j+ 1

2
,m

+b2xhz|n+1

i− 1

2
,j+ 1

2
,m

=

b2xhz|ni+ 3

2
,j+ 1

2
,m− 2

(

2+ b2x
)

hz|ni+ 1

2
,j+ 1

2
,m + b2xhz|ni− 1

2
,j+ 1

2
,m

− 4by
(

ex|n+
1

2

i+ 1

2
,j+1,m

− ex|n+
1

2

i+ 1

2
,j,m

)

+ 4bx
(

ey|n+
1

2

i+1,j+ 1

2
,m

− ey|n+
1

2

i,j+ 1

2
,m

)

(68)

where the left sides represent the elements of the tridiago-
nal matrix to be solved. The tridiagonal equations for the

other components e
n+ 1

2

y , ez|n+
1

2 hx|n+1 and hy|n+1 are
easily obtained from (67) and (68) by cyclic permutation
of indices.

The forward-marching algorithm provided by the so-
lution of these two sets, each of three tri-diagonal equa-
tions, proceeds similarly as in the Yee’s explicit algo-
rithm — compare (67) with (11) and (68) with (12) —

in a “leapfrog” way, ie the values ex,y,z|n+
1

2 , hx,y,z|n+1 ,
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ex,y,z|n+
3

2 , hx,y,z|n+2 etc are subsequently obtained from
the values in two preceding time layers.

In two dimensions for the TE wave the pertaining
“leapfrog” equations for the ex and ez in the first step
read

ex|n+
1

2

i+ 1

2
,m
= ex|n−

1

2

i+ 1

2
,m
−bz

(

hy|ni+ 1

2
,m+ 1

2

−hy|ni+ 1

2
,m−

1

2

)

, (69)

b2xez|
n+ 1

2

i+1,m+ 1

2

− 2
(

2 + b2x
)

ez|n+
1

2

i,m+ 1

2

+ b2xez|
n+ 1

2

i−1,m+ 1

2

=

b2xez|
n− 1

2

i+1,m+ 1

2

− 2
(

2 + b2x
)

ez|n−
1

2

i,m+ 1

2

+ b2xez|
n− 1

2

i,m+ 1

2

− 4bx
(

hy|ni+ 1

2
,m+ 1

2

− hy|ni− 1

2
,m+ 1

2

)

,

(70)

while for hy in the second step one obtains

b2zhy|n+1

i+ 1

2
,m+ 3

2

− 2
(

2 + b2z
)

hy|n+1

i+ 1

2
,m+ 1

2

+ b2zhy|n+1

i+ 1

2
,m−

1

2

=

b2zhy|ni+ 1

2
,m+ 3

2

− 2
(

2 + b2z
)

hy|ni+ 1

2
,m+ 1

2

+ b2zhy|ni+ 1

2
,m−

1

2

−4bx
(

ez|n+
1

2

i+1,m+ 1

2

−ez|n+
1

2

i,m+ 1

2

)

+4bz
(

ex|n+
1

2

i+ 1

2
,m+1

−ex|n+
1

2

i+ 1

2
,m

)

.

(71)

For the TM wave holds analogously

b2zey|
n+ 1

2

i,m+1
− 2

(

2 + b2z
)

ey|n+
1

2

i,m + b2zey|
n+ 1

2

i,m−1
=

b2zey|
n− 1

2

i,m+1
− 2

(

2 + b2z
)

ey|n−
1

2

i,m + b2zey|
n− 1

2

i,m−1
+

4bx
(

hz|ni+ 1

2
,m+1

−hz|ni+ 1

2
,m−1

)

−4bz
(

hx|ni,m+ 1

2

−hx|ni,m−
1

2

)

.

(72)

hx|n+1

i,m+ 1

2

= hx|ni,m+ 1

2

+ bz
(

ey|n+
1

2

i,m+1
− ey|n+

1

2

i,m

)

, (73)

b2xhz|n+1

i+ 3

2
,m

− 2
(

2 + b2x
)

hz|n+1

i+ 1

2
,m

+ b2xhz|n+1

i− 1

2
,m

=

b2xhz |ni+ 3

2
,m − 2

(

2 + b2x
)

hz|ni+ 1

2
,m + b2xhz|ni− 1

2
,m

− 4bx
(

ey|n+
1

2

i+1,m − ey|n+
1

2

i,m

)

.

(74)

Observe that for TE as well as for TM wave only one
equation have to be solved for each ∆t step since (69)

and (73) give ex|n+
1

2

i+ 1

2
,m

and hx|n+1

i,m+ 1

2

in an explicit way.

7 THE APPROXIMATE IMPLICIT

FORMULATION: THE CNSS–FDTD METHOD

Alternatively can (44) be expressed in the following
way

{

I− c∆t

2

(

D12 −D21

)

}

f
n+1=

=
{

I+
c∆t

2

(

D12 −D21

)

}

f
n

(75)

and then similarly as in (53) be re-cast into the form

{

I− c∆t

2
D12

}{

I+
c∆t

2
D21

}

f
n+1+

+
c2∆2

t

4
D12D21f

n+1 =

=
{

I+
c∆t

2
D12

}{

I− c∆t

2
D21

}

f
n

+
c2∆2

t

4
D12D21f

n.

(76)

After having neglected last terms on RHS and LHS of

(76) one again arrives to analogous equation as (54)

{

I− c∆t

2
D12

}{

I+
c∆t

2
D21

}

f
n+1 =

{

I+
c∆t

2
D12

}{

I− c∆t

2
D21

}

f
n,

(77)

which can again be splitted into two subsequent steps

{

I+
c∆t

2
D21

}

f
∗ =

{

I− c∆t

2
D21

}

f
n, (78)

{

I− c∆t

2
D12

}

f
n+1 =

{

I+
c∆t

2
D12

}

f
∗. (79)

This procedure is called Crank-Nicolson-Split-Step

(CNSS) FDTD method. In both methods, ADI-FDTD

and CNSS-FDTD, the terms of the second order on the

RHS and the LHS of (53) and (76) are neglected. There-

fore both are in ∆t second order approximate in com-

parison with the full Crank-Nicolson formulation (52) or

(75).

The first and the last equation of (78) after the spatial

discretisation read

2
(

ex|n+
1

2 − ex|n
)

= c∆t

(

δyhz|n+
1

2 + δyhz |n
)

,

(80)

2
(

hz |n+
1

2 − hz|n
)

= c∆t

(

δyex|n+
1

2 + δyex|n
)

.

(81)

The first and the last equation of (79) are

2
(

ex|n+1− ex|n+
1

2

)

=−c∆t

(

δzhy|n+
1

2 + δzhy|n+1
)

,

(82)

2
(

hz|n+1− hz|n+
1

2

)

=−c∆t

(

δxey|n+
1

2 + δxey|n+1
)

.

(83)
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In a similar way as in preceding paragraph the algo-
rithm can be organised in a tridiagonal matrix for the
first half-step analogous to (61) and (62)

[

4− c2∆2
t δ

2
y

]

ex|n+
1

2 =
[

4 + c2∆2
t δ

2
y

]

ex|n + 4c∆tδyhz|n,
(84)

[

4− c2∆2
t δ

2
y

]

hz|n+
1

2 =
[

4 + c2∆2
t δ

2
y

]

hz|n + 4c∆tδyex|n,
(85)

and for the second half-step analogous to (63) and (64)

[

4−c2∆2
t δ

2
z

]

ex|n+1=
[

4 +c2∆2
t δ

2
z

]

ex|n+
1

2 − 4c∆tδzhy

∣

∣

n+ 1

2,

(86)

[

4−c2∆2
t δ

2
x

]

hz|n+1=
[

4 +c2∆2
t δ

2
x

]

hz|n+
1

2 − 4c∆tδxey
∣

∣

n+ 1

2.

(87)

The “leapfrog” algorithm can be obtained in an anologous
way as (66) and (65) with the result

[

4− c2∆2
t δ

2
y

]

ex|n+
1

2 =
[

4− c2∆2
t δ

2
y

]

ex|n−
1

2 +8c∆tδyhz |n,

(88)

[

4− c2∆2
t δ

2
x

]

hz|n+1 =
[

4− c2∆2
t δ

2
x

]

4hz|n − 8∆tδyex|n+
1

2 .

(89)

Written down explicitly, (88) and (89) takes the form

b2yex|
n+ 1

2

i+ 1

2
,j+1,m

− 2
(

2 + b2y
)

ex|n+
1

2

i+ 1

2
,j,m

+ b2yex|
n+ 1

2

i+ 1

2
,j−1,m

=

= b2yex|
n− 1

2

i+ 1

2
,j+1,m

− 2
(

2 + b2y
)

ex|n−
1

2

i+ 1

2
,j,m

+ b2yex|
n− 1

2

i+ 1

2
,j−1,m

− 8by
(

hz|ni+ 1

2
,j,m+ 1

2

− hz|ni+ 1

2
,j,m−

1

2

)

,

(90)

b2xhz|n+1

i+ 3

2
,j+ 1

2
,m
−2

(

2+b2x
)

hz|n+1

i+ 1

2
,j+ 1

2
,m

+b2yhz|n+1

i− 1

2
,j+ 1

2
,m
=

= b2xhz|ni+ 3

2
,j+ 1

2
,m−2

(

2+b2x
)

hz|ni+ 1

2
,j+ 1

2
,m+b2xhz |ni− 1

2
,j+ 1

2
,m

+ 8bx
(

ey|n+
1

2

i+ 1

2
,j+1,m

− ey|n+
1

2

i+ 1

2
,j,m

)

.

(91)

The difference in leapfrog algorithm between ADI-
FDTD (67),(68) and CNSS-FDTD (90),(91) is clearly
visible, while in ADI-FDTD always both terms δyhz|n ,
δzhy|n , and δyex|n+

1

2 respectively, are present in CNSS-

FDTD only δyhz|n in (90) or δxey|n+
1

2 in (91) occur.

7 POWER CONSERVATION AND

THE NUMERICAL DISPERSION

OF THE IMPLICIT SCHEMES

For the sake of simplicity let us consider the two-
dimensional case only. Using the von Neumann’s proce-
dure for investigating the power-conservation and numer-
ical-dispersion properties of respective algorithms one ob-
tains for the full Crank Nicolson formulation of the FDTD
method the equation

(1 +A2
x +A2

z)ξ
2 − 2(1−A2

x −A2
z)ξ + 1 = 0 (92)

with the solution

ξ =
1−A2

x −A2
z − j2

√

A2
x +A2

z

1 +A2
x +A2

z

, (93)

For the ADI-FDTD for each of two simulation-half-
steps ∆t/2 the following equation is obtained

(

1 +A2
x,z

)

ξ1,2 − 2
√

ξ1,2 +
(

1 +A2
z,x

)

= 0 (94)

with the solution

√

ξ1,2 =
1− j

√

(

1 +A2
x,z

)(

1 +A2
z,x

)

−1

1 +A2
x,z

, (95)

ie for the full step ξ =
√
ξ1ξ2 .

For the CNSS-FDTD method one similarly obtains for
respective half-steps the equation

(

2 +A2
x,z

)

ξ1,2 − 2
(

2−A2
x,z

)
√

ξ1,2 +
(

2 +A2
x,z

)

= 0
(96)

with the solution

√

ξ1,2 =
{2−A2

x,z

)

−j2
√
2Ax,z

2 +A2
x,z

. (97)

The power-flow-density for the full step ∆t is in all
cases unconditionally conserved since either in (93) |ξ| =
1, or in (95) and (97) |ξ| = |√ξ1| |

√
ξ2| = 1, holds.

The dispersion characteristics are fully determined by
the phase of ξ , ω∆t = −phase(ξ), ie in the case of full
Crank-Nicolson formulation (93) by

ω∆t = arccos
1−A2

x −A2
z

1 +A2
x +A2

z

, (98)

in the case of ADI-FDTD by

ω∆t = 2 arccos
1

√

(1 +A2
x)(1 +A2

z)
(99)

and in the case CNSS-FDTD by

ω∆t = arccos
2−A2

x

2 +A2
x

+ arccos
2−A2

z

2 +A2
z

(100)
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Fig. 4. Dependance of the normalised frequency ω∆t on the nor-
malised time step kc∆t , for kx∆x = kz∆z = 3 and the propaga-

tion angle arctan(kz/kx) = 0.262

For the explicit Yee-FDTD the values can be calcu-
lated until the Courant limit is reached. Here the simu-
lated frequency arrives at the limit given by the sampling
theorem ω∆t = π . For CN-FDTD and ADI-FDTD the
sampling theorem limit ω∆t → π is approached asymp-
totically with increasing ∆t . For CNSS-FDTD the limit
for large ∆t is equal to ω∆t → 2π . One has to keep in
mind that for ω∆t > π the aliasing effects occur.

Generally the phase velocity and the group velocity for
implicit methods decrese with increasing time-step ∆t .
The possibility of the arbitrarily large ∆t steps in the
ADI-FDTD and CNSS- FDTD method does not neces-
sarily mean any advantage, since with growing ∆t the
phase velocity vp = phase(ξ)/k∆t decreases, ie the sim-
ulated spatial propagation path pertaining to increased
time step remains effectively the same.

As seen from the comparison of curves for CN-FDTD
and ADI-FDTD they are very close. ie the ADI-FDTD
method well approximates the results for the full CN-
FDTD method. Neglecting the second order terms in the
factorization (55), (56) does not cause any substantial er-
ror in dispersion characteristics unlike the CNSS-FDTD
where the factorization (78), (79) leads to larger numeri-
cal dispersion errors.

8 CONCLUSIONS

In this second part of the short tutorial the selected
aspects of computer simulation of electromagnetic wave

phenomena in two and three dimensions have been thor-
oughly discussed. We have focused mainly on the power
conservation and the numerical dispersion properties of
particular methods.
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