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A COMPARATIVE ANALYSIS OF THREE
MONOCULAR PASSIVE RANGING METHODS

ON REAL INFRARED SEQUENCES
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Three monocular passive ranging methods are analyzed and tested on the real infrared sequences. The first method exploits
scale changes of an object in successive frames, while other two use Beer-Lambert’s Law. Ranging methods are evaluated by
comparing with simultaneously obtained reference data at the test site. Research is addressed on scenarios where multiple
sensor views or active measurements are not possible. The results show that these methods for range estimation can provide
the fidelity required for object tracking. Maximum values of relative distance estimation errors in near-ideal conditions are
less than 8%.
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1 INTRODUCTION

Passive ranging is of special interest for wide range
of applications, such as video surveillance and secu-
rity, speed control, air traffic control, obstacle detection,
robotics. Passive sensors are widely used in military sys-
tems for target tracking, missile guidance or weapon fire
control, where the use of active ranging sensors is dis-
advantageous over the passive, since they can be quickly
detected and destroyed by homing missiles.

Optical flow and stereo vision are the most common
techniques used to passively estimate distance to an ob-
ject. Both methods are relied on the geometrical principle
of triangulation. In optical flow, the baseline is created
due to the sensor motion, whereas in stereo the distance
between cameras (baseline) is fixed [1]. Number of used
sensors varies from one in optical flow method, through
two for single baseline approach, to three or more for
multiple baseline method [2] and methods exploring the
network of passive sensors [3].

This research is focused on scenarios where only one
passive imaging sensor is available. An overview of the ex-
isting literature devoted to this topic suggests three main
approaches. One of them exploits surface changes of an
object in successive frames. The changes of the object
surface can be result of sensor movement [4], [5], object
movement [6], [7] or both [8]. This approach require addi-
tional data: initial distance, dimensions of targets, or tra-
jectory travelled by the sensor. The second group of meth-
ods is relied on Beer-Lambert’s Law and atmospheric
propagation model. Monocular passive ranging method
for tracking emissive targets [9] is based on atmospheric
oxygen absorption in near-infrared spectrum, while spec-
tral attenuation of two oxygen absorption bands in the

near-infrared and visible spectrum is suggested in [10].
The study [8] examines fusion of the object surface mea-
surement and atmospheric propagation model based ap-
proaches. The third group of approaches is relied on cam-
era focus information. The relative distance between a
moving object and the sensor is estimated from image
defocus data in [11], where an estimation of the back-
ground together with the object image is needed, as a
replacement for two images required by traditional depth
from defocus algorithms [12].

The main objective of this research was to test, on real
infrared (IR) sequences, the efficiency of a three methods
for monocular passive ranging: method based on image
size measurement, method based on intensity measure-
ment and method based on contrast measurement. Rele-
vant literature does not include many reports on testing
above described methods on real life scenarios, such that
this paper is deemed to be a modest contribution to the
important field of passive distance estimation. With this
objective in mind, the rest of paper is structured as fol-
lows: Section 2 discusses the passive ranging methods and
relevant theory. Section 3 addresses the application of al-
gorithms on real data, the dataset collection, the passive
ranging data extraction, and the analysis of obtained re-
sults. Section 4 concludes the paper and is followed by
references.

2 PASSIVE RANGING METHODS

Three passive ranging methods using image size, in-
tensity and contrast measurements from one sensor are
analyzed. No prior knowledge about the sensor or about
the shape, size or any other features of the target is as-
sumed.
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2.1 Method based on image size measurement

By measuring the change in apparent target size, it
is possible to estimate the range from the sensor to the
target. It is well known that size of an incoming target
grows while approaching the sensor, and principles of
projective geometry can be used for calculations [7]. The
apparent size of target also depends on viewing aspect
changes, but if a straight line motion is assumed, the
distance to the target at the frame k is given by

RA(k) = R0

√

A0

A(k)
(1)

where A(k) is object size (area) in the current frame, and
initial distance-R0 and the target size in initial frame-A0

are known. Target size values A0 and A(k) are obtained
through video image processing.

2.2 Method based on intensity measurement

The intensity or gray level I in the image is a function
of scene radiance attenuated by transmission through the
atmosphere, and characteristics of the image sensor. In
its simplest form this statement becomes

I = GLτ = GLe−σR (2)

where G is the sensor transfer function, L is the scene
radiance, σ is the atmosphere extinction coefficient, R is
optical path length through the atmosphere (distance),
and transmittance of the atmosphere τ is described by
Beer-Lambert’s Law. If constant radiance of the target is
supposed, for two successive frames from (2) follows

RI(k) = RI(k − 1) +
1

σ
ln

I(k − 1)

I(k)
(3)

where RI(k−1) and RI(k) are target to sensor distances,
or ranges, and I(k − 1) and I(k) are average gray levels
of the object in two successive frames. Equation (3) can
also be written as

RI(k) = R0 +
1

σ
ln

I0

I(k)
(4)

where R0 and I0 are initial distance and object average
gray level in the initial frame, respectively.

2.3 Method based on contrast measurement

The image contrast is given by

C =
IT − IB

IB
(5)

where IT is the average gray level value of target, and IB
is the average gray level value of background. As is well

known, image contrast is scene contrast reduced by the
transmittance of atmosphere

C = KCSCe
−σR (6)

where K is the sensor contribution, and CSC is scene
contrast, given by

CSC =
LT − LB

LB

(7)

where LT is the radiance of target, and LB is the radi-
ance of its background.

If constant contrast in the scene is supposed, for two
successive frames from (6) it can be derived

RC(k) = RC(k − 1) +
1

σ
ln

C(k − 1)

C(k)
(8)

where RC(k) and RC(k−1) are object to sensor distances
and C(k) and C(k − 1) are the target contrasts in two
successive frames. It can be shown that (8) can be written
as follows

RC(k) = R0 +
1

σ
ln

C0

C(k)
(9)

where C0 is the target contrast in the initial frame.

A great influence on the veracity of distance estimation
in (4) and (9) has the atmospheric extinction coefficient σ
[13]. Assessment of σ can be made based on atmospheric
model, such as: LOWTRAN, MODTRAN or HITRAN.
These computer programs require knowledge of a large
number of input parameters for a valid estimation of at-
mospheric transmissivity. The second method commonly
used in the visible range is based on an assessment of opti-
cal visibility, but it can not be used for thermal windows.
Moreover, the problem of uncertainty of this parameter
can be solved by introducing the novel algorithms, such as
unbiased estimation coupled with the extended Kalman
filter, suggested in [14].

3 THE APPLICATION OF

ALGORITHMS ON REAL DATA

3.1 Dataset Collection

Previously described methods were applied to real in-
frared image sequences, which were recorded by IR cam-
era (3–5 µm). The sequences were generated using the
Dual Observer Passive Ranging System (DOPRS) that
is designed to track an airborne target. System uses two
thermal cameras and estimates distance by triangulation
method. In this research sequences from one camera are
used, while the distance obtained from the DOPRS is
used as the reference distance in analysis and comparison
of results. The reference distances to the target in the an-
alyzed video sequences were determined with an absolute
error of less than five meters.

All the analyzed sequences contain a single airborne
target in the vicinity of the center of the frame, of which
the maneuver in relation to the acquisition sensor dif-
fers in each sequence. Sequences were recorded in various
weather conditions and with different airplane types.
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Fig. 1. Target in the first, the 100 th and the last frames in sequence A

Fig. 2. Target in the first, the 100 th and the last frames in sequence B

Fig. 3. The estimated distances to the target in sequence A Fig. 4. The estimated distances to the target in sequence B

3.2 Passive Ranging Data Extraction

Three important steps for each method are performed
on sequences: detection and segmentation–finding the ob-
ject and extracting it from the background; feature ex-

traction — obtaining description of object and/or back-
ground; and finally combining the features with a known
atmosphere extinction coefficient and initial range into
the target distance estimate.

A gray level threshold for the detection and segmen-
tation of the target is determined by the method of Tsai
[15]. For distance estimation by contrast and intensity

methods is necessary to know the value of the parameter

σ . It can be expressed as function of object range, and
contrast or intensity from (4) and (9). For the purposes of
this study parameter σ was estimated using the test se-
quences recorded immediately before the analyzed. Test

sequences and distance estimation in 100 frames from
DOPRS are used, together with related image contrast
and intensity measures.

3.3 Analysis of Results

Three algorithms for passive distance estimation were
applied on the four typical infrared image scenarios in

order of their verification and analysis.
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Fig. 5. Number of pixels representing the target in sequence B

Fig. 6. Target in the first, the 160 th and the last frames in sequence C

3.3.1 IR sequence A

In this scenario, the target is moving smoothly toward
the sensor. Figure 1 shows the first, hundredth and last
frame of the analyzed sequence. The sky in the back-
ground is clear, without clouds. Contours of the airplane:
the wings and tail are clearly visible in all frames. In Fig-
ure 1 can be seen the difference in the intensity of the
target gray level in the three frames shown.

The estimated distances to the target are shown in
Figure 3, where RA is distance obtained on the basis of
changes in the target size, the RI is calculated based on
changes in the targets intensity, the RC is estimated from
changes in target contrast from the background, and R

is reference range from the DOPRS. All methods perform
well and are stable.

The average relative error is calculated by:

Errm =
1

N

N
∑

k=1

|R(k)−Rm(k)|

R(k)
, m ∈ {A, I, C} (10)

where N is the total number of frames, and the in-
dex m refers to the applied method: the size –A , in-
tensity –I and contrast –C . For the analyzed sequence
the following results were obtained: the average rela-
tive error of distance estimation using the method of

target size changes ErrA = 2.38%, using the inten-

sity method ErrI = 1.97% and the method of contrast

ErrC = 1.88%. Maximum values of relative errors are
less than 8%.

3.3.2 IR sequence B

In this scenario, the target is going away from the
sensor. Figure 2 shows the first, hundredth and the last
frame. The target is in the black square that represents
the tracking window of the DOPRS. The sky in the back-
ground is clear. The target is at relatively large distance,
and its contours are not clearly visible.

Figure 4 shows the estimated distances to the target
using the three algorithms. From the figure one can see
that the estimated distance RA is significantly different
than the reference distance R . The average relative er-

ror is ErrA = 12.41%, while its maximum value even
ErrAmax = 30.78%. Distance estimation error of the
other two algorithms is about the same as in the previous

scenario, ErrI = 1.60%, ErrC = 1.86%.

Large error in RA estimation is a consequence of poor
target size estimation. Figure 5 shows the target size,
which vary from 3 to 10 pixels.

3.3.3 IR sequence C

Background of the target (sky) fluctuates significantly

as can be seen in Figure 6, which shows the first, 160th

and last frames of the sequence. The target is uniformly
approaching to the sensor, while a cloudy sky in the back-
ground is replacing by the clear and overcast again.

The estimated distances in this sequence are shown in
Figure 7, and average error of distances estimations are
illustrated in Fig. 8. Figure 8 shows a good comparison
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Fig. 7. The estimated distances to the target in sequence C Fig. 8. Range estimation relative error in sequence C

Fig. 9. Target in the first, the 80 th and the last frames in sequence D

between range estimations and the reference data at the

beginning and the end of sequence, with significant de-

viations from 100 to 170 frames. This can be explained

by an influence of large background changes to the object

contrast.

3.3.4 IR sequence D

Figure 9 shows three frames of target that is mov-

ing towards the sensor at relatively short distances. From

Fig. 9 it can be seen that background gray level is uni-

formly changing while the target is of a high intensity.

In Figure 10 the estimated distances are shown. The

figure shows that the distance RA sufficiently assess in

relation to the reference distance R with the average dis-

tance estimation error at ErrA = 3.64%. Significant de-

viation of distance RI compared to R can be explained

by the high intensity of target gray level, due to it prox-

imity.

The average gray level of the target’s pixels is rela-

tively high (94%) and it is more or less constant, which

can be explained by saturation of the sensor. The effect

of sensor saturation were compensated by the changes of

the background gray levels, and the distance estimation

RC is significantly beter than the RI .

Fig. 10. The estimated distances to the target in sequence D

4 CONCLUSION

Three monocular passive ranging methods were dis-
cussed and applied on four real sequences recorded by an
IR sensor. It is shown that these methods offer useful,
but not ideal range estimations. Method based on im-
age size measurement requires an extended target (rep-
resented with multiple pixels) for acceptable results, al-
though in case of point target (large distances) it gener-
ates poor estimations. On the other hand, methods re-
lied on Beer-Lambert’s Law give satisfactory results for
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point target range estimation. When target is close to
the sensor, saturation effect arises and deviates contrast
and intensity based estimations. Background fluctuation
additionally affects the ranging. Results obtained and an-
alyzed suggest the use of a hybrid approach with image
size, intensity and contrast features all taken into account.
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