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Partial discharge (PD) current is an impulse signal at nanosecond level, which can generate electromagnetic (EM) wave
containing broadband frequency information. The frequency band of EM signal is from MHz up to GHz. Due to different
PD patterns, impulse currents with different shapes induce different EM waves containing different frequency information.
Therefore, using the features extracted from frequency domain of EM signals, the classification of PD patterns can be
effectively got. It is good to use wavelet or wavelet packet decomposition to select features. However, if the decomposition
level is too shallow to find enough effective features, it cannot group the EM signals to the right pattern. On the contrary,
although it is easier to find features to distinguish the PD pattern if the decomposition level is deep, there will be a lot of
redundancy variables and it is hard to select features among so many variables. In this paper, a method is presented, which
selected features in the whole decomposition tree instead of selecting among the leaf node of the tree, because more potential
features can be found in the whole tree. With the present method, it is possible not only to get enough features, but also
to eliminate the redundancy variables effectively. In order to validate the method, large EM signals from four PD patterns
in a power transformer are acquired as the training data and testing data for feature selection and classification, and three
common classification methods are introduced to classify the PD patterns using the features selected by the method. Most
of the classification results are satisfactory indicating that the proposed method is effective.
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1 INTRODUCTION

Partial discharge (PD) is treated as a main threaten
to the insulation system in power equipment. How to de-
tect and identify PD immediately is very important to
the safety and operation of power equipment. PD current
is an impulse signal at nanosecond level, which can gen-
erate electromagnetic (EM) wave containing wide band
frequency information. The band width of EM signal is
from MHz up to GHz, so abundant frequency information
of PD can be detected using EM measuring technology,
which has been widely applied in field to detect PD [1–5].

Because the frequency components of EM signals from
different type of PDs are not all the same, it is possible
to extract frequency features of EM signals to identify
PD patterns. Wavelet or wavelet packet decomposition
(WPD) are always treated as the common feature selec-
tion method in classification of EM signals. Some of the
previous research adopted the information in different fre-
quency band as classification features, which can be got
from each tree node in WPD tree, including energy fea-
tures, fractal dimension features, etc [6–11].

The differences in the shape of PD currents are very
small, so the variance of EM signals generated by PDs is
minute, the level of WPD should be deep enough to get
the features, which can indicate the differences among the
EM signals. However, the deeper the decomposition level
is, the much larger the number of the energy feature can-

didates is. This paper presents a method to do feature
selection effectively by WPD and singular value decom-
position (SVD). After feature selection, the validity check
was used in this paper and the classification results were
satisfactory.

In Section 2, WPD and SVD used in this paper are in-
troduced and the definition of node energy is presented.
In the third section, it is presented how to select energy
features using WPD and SVD. In the fourth section, the
experimental system for acquiring EM signals was pre-
sented and a large number of EM signals were collected
for feature selection and classification using the method
introduced in the third section. In the fifth section, three
classification models, including support vector machine
(SVM), the neural network and the nearest neighbor prin-
ciple, are introduced to classify PD patterns using energy
features of EM signals selected in this paper.

2 WAVELET PACKET

DECOMPOSITION AND SVD

2.1 Wavelet Packet Decomposition

Wavelet decomposition and wavelet packet decompo-
sition (WPD) are the effective tools in analysis of fre-
quency characteristics of transient signals. In order to find
the features contained in the EM signals, this paper in-
troduces the wavelet packet decomposition, because the
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Fig. 1. Sketch of wavelet packet decomposition with three levels

wavelet packet decomposition can do analysis both in the
low frequency segment and the high frequency segment
for signals, while wavelet decomposition only decompose
signals in the low frequency segment and thus loses some
details in the high frequency domain. The typical wavelet
packet decomposition is shown in Fig. 1.

Each node in WPD tree records the wavelet coeffi-
cients, which reflects time-domain characteristics in spe-
cial frequency band of the signal. Calculating the energy
of wavelet coefficients in each node using equation (1), we
can get the node energy ex of each node in WPD tree.

ex =
1

N
x⊤x (1)

where x represents the wavelet coefficients of each node,
and N is the length of the wavelet coefficients. All the
node energies form the node energy vector of the signal,
and the energy matrix of a group of EM signals decom-
posed by wavelet packet is shown in equation

E =
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(2)

where n represents the number of nodes and the serial
number of nodes in WPD tree is form 1 to n . M is the
number of EM signals. ei,j represents the ith node energy
of the j th EM signal.

2.2 Singular Value Feature Vector

The singular value decomposition (SVD) is an effec-
tive algebraic feature extraction method. Singular value
decomposition technique has been widely applied in the
image data compression, signal processing and pattern
analysis. A real symmetric matrix can be transformed
into a diagonal matrix after orthogonal transformation,
and any real matrix Am×n can be transformed into a
diagonal matrix using SVD.

Make Am×n a real matrix (without loss of generality,
set m ≥ n) and rank(A) = k , then there exists two or-
thogonal matrices of Um×m and Vn×n and the diagonal

matrix of Dm×n , and the following equation is estab-
lished [12].

A = UDV ⊤. (3)

Here, Dm×n =

(

Σk×k 0
0 0

)

, Σk×k = diag(σ1, σ2, . . . , σk),

U⊤
m×m = (u1, u2, . . . , uk, . . . , um), Vn×n = (v1, v2, . . . ,

vk, . . . , vn), where ⊤ denotes the transpose, σi =
√
λi

(i = 1, 2, . . . , k, . . . , n) are called the singular values of
matrix A . λ1, λ2, . . . , λk are the whole of nonzero eigen-
values of AA⊤ , λ1 ≥ λ2 ≥ . . . λk > 0. λk+1 = λk+2 =

· · · = λn = 0 are the n− k zero eigenvalues of AA⊤ . ui

and vi (i = 1, 2, . . . , k ) are the eigenvectors of AA⊤ and

A⊤A corresponding to nonzero eigenvalues. Equation (3)
can be written in the form

A =

k
∑

i=1

σiuiv
⊤

i . (4)

If A represents the energy matrix, equation (4) is the
orthogonal decomposition of the energy matrix. Singular
values σi in the main diagonal of singular value matrix
Σ, together with the remaining n − k zero elements of
Dm×n , constitute an n-dimensional vector

xn×1 = Dn×ne = (σ1, . . . , σk, 0, . . . , 0)
⊤ (5)

where Dn×n is an n-order sub-vector in D , e = (1, 1,

. . . , 1)⊤ , and xn×1 is called the singular value eigenvector
of A. For any real matrix, up to the conditions λ1 ≥
λ2 ≥ · · · ≥ λk , singular value diagonal matrix is unique.
Therefore, one energy matrix E corresponds to one unique
singular value feature vector.

3 FEATURES SELECTION FOR EM SIGNALS

In [6–9] it was presented that using wavelet or wavelet
packet decomposition extraction of energy features and
the classification results were satisfactory, while the meth-
ods mentioned in these papers focused on selecting energy
features among the leaf nodes in WPD tree. In this pa-
per, according to the analysis of WPD of EM signals, it
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Fig. 2. Energy vector of EM signals induced by four type of PD pattern using wavelet packet decomposition, depth=5, mother wavelet
=’db8’: (a) – floating, (b) – needle, (c) – oil clearance, (d) – void

Fig. 3. Energy vector of EM signals induced by four type of PD pattern using wavelet packet decomposition, depth=8, mother wavelet
=’db8’: (a) – floating, (b) – needle, (c) – oil clearance, (d) – void

is found that, if the level of decomposition is not deep
enough, there would not be effective parameters for clas-
sification. In other words, the PD pattern cannot be clas-
sified using these parameters. Figure 2 shows the energy
vectors of EM signals from four types of PD patterns.

The decomposition depth is five and the mother wavelet
is ’db8’. There are almost no differences among the en-
ergy vectors except the amplitude. So that, it cannot be
classification of PD pattern using energy vectors of EM
signals with this depth of WPD. Figure 3 shows the en-
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Fig. 4. Singular value of the needle-plane energy vector matrix E

ergy vectors of EM signals, the depth of WPD is eight and
the mother wavelet is ’db8’. The enlarge detail of energy
vector in the 8th level is also shown in Fig. 3. It is obvious
that, if the depth of WPD is deep enough, the parameters
from the energy vector can be selected as energy features
for classification of PD patterns.

However, if the depth of WPD is too deep, the number
of tree node must increase geometrically. Taking the 8th

level of WPD as an example, the number of tree node is
up to 511. To be able to extract energy features from these
energy vectors, the paper introduced SVD mentioned in

Section 1 to select energy features. The step of feature
selection is as follows:

1) doing 8 level WPD for EM signals;

2) calculating energy of each node in decomposition tree
for each EM signal, composing the energy vector of
each EM signal;

3) constructing the energy matrix E using all the energy
vector of EM signals from the same PD pattern;

4) calculating the singular value of each E of different
type of PD patterns shown in Fig. 4;

5) obtaining primary singular vectors depending on the
singular value for each kind of EM signals shown in
Fig. 5a and b;

6) selecting a collection of nodes from the WPD tree
nodes depending on their component in the primary
singular vectors shown in Fig. 5a and b;

Finding the collection should obey the following prin-
ciple. First, the collection is constructed with the node if
its component is bigger than 5% of the maximum com-
ponent of that primary singular vector shown in Fig. 5.
Second, reduction of the collection is desirable for elimina-
tion of superfluous information. An energy feature group
which contains parent node energy and all of its descen-
dant node energy may be redundant because any parent
node of WPD tree can be constructed from its children

Fig. 5. Singular vectors of energy matrix E of needle: (a) – singular vector corresponding to largest singular value (b) – singular vector
corresponding to the second largest singular vector

Fig. 6. The scheme of reduction of the collection
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Fig. 7. Classic PD pattern in power transformer: (a) – floating (b) – needle (c) – oil clearance (d) – void in press-board

Fig. 8. The experiment setup

nodes. Therefore, an energy feature group is appropri-
ate if the group does not contain both parent and all of
the children energy nodes within a given singular value.
In that case, the parent node should be reserved as an
energy feature while all of its children nodes should be
discarded.It must be notified that, if both the parent and
one of its children nodes are in the collection, each of them
should be preserved as energy feature. This is because the
child node contains some detail information. The scheme
of reduction of the collection is shown in Fig. 6. Finally,
the collection is the energy feature set. Step 1 to step 3
have been mentioned above, the detailed information of
step 4 to step 6 is as follows.

In Section 2, it is mentioned that the bigger the sin-
gular value is, the more various the energy vector is in
new variable space. In this paper, energy vector matrix
E of EM signals from four types of PD patterns were ob-
tained; the singular values of different E were calculated
shown in Table 1. Figure 4 shows the singular value of
energy vector matrix of EM signals from the pattern of
needle-plane PD.

In Fig. 4, the singular values of energy vector decrease
sharply, which contains only two primary singular values,
that means there are two new main energy vectors con-
tributing to the main change in new variable space. The
singular values of the energy vector E from four types
of PD patterns contain 1 or 2 primary singular values;
the ratio between singular values is used to express the
variation among singular values

∆δ12 =
δ1 − δ2

δ1
,

∆δ23 =
δ2 − δ3

δ2
,

∆δ34 =
δ3 − δ4

δ3

where δ1 ,δ2 ,δ3 and δ4 are the biggest four singular val-
ues of, ∆δ12 , ∆δ23 and ∆δ34 are the ratios between two
singular values. Table 1 shows the ∆δ12 ,∆δ23 and ∆δ34
of four types of PD patterns. It can be seen that, con-
ducted by SVD, E of floating PD, oil clearance PD and
void PD in pressboard is constructed with a primary sin-
gular vector, while E of needle PD is constructed with
two primary singular vectors. After executing these steps
above, seven energy features are finally extracted, which
are (8, 31), (8, 10), (8, 8), (7, 7), (7, 13), (5, 3), (3, 0).
The first digit in bracket denotes the level of WPD; the
second digit denotes the position of tree node in the level
indicated by the first digit. The result of feature selection
is shown in Fig. 6, where all the white dots are the nodes
selected after the step 6 was finished, the dots without
deletion line in white nodes are the final features obeying
the selecting principle mentioned above, while the white
nodes with deletion line are discarded nodes. Other gray
nodes are just redundant nodes.
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Fig. 9. Classic EM signals: (a) – floating (b) – needle (c) – oil clearance (d) – void in press-board

4 SAMPLES AND EXPERIMENT

4.1 Experimental Setup

For validity checking of the method presented in this
paper, four classic PD patterns, including floating PD,
needle PD, oil clearance PD and void PD in press-board,
were prepared (shown in Fig. 7). More than thousands
of EM signals induced by the four types of PD patterns
were collected for checking the availability of this method.
The scheme of experimental setup is shown in Fig. 8. The
EM sensor is a micro-strip antenna. The oscilloscope is
Tek3054B, the sample frequency is 5 GS/s and the band
width is 500 MHz. Furthermore, because the frequency
characteristic of EM signals has a relationship with the
propagation distance [15], the distance between the sensor
and the PD source is 10 cm. The model of four classic
types of PD patterns is shown in Fig. 8. In the model
of floating PD, an equilateral triangle with the length of
side 5mm is treated as the floating electric potential. The
classic EM signals generated by the four PD patterns are
shown in Fig. 9. Table 3 shows the number of samples
from the four types of PD pattern and the measuring
voltage.

4.2 Feature Selection For Sample Data

Ternary diagram is a very useful and intuition diagram
to show the distribution of data corresponding to three
parameters.In this section, using the energy features se-
lected in Section 2, the EM signals from four types of

PD patterns can be classified directly in ternary diagram
(Fig. 10), where it is obviously that the gravity centers
of distribution of four types of EM signals, around with
circle or ellipse, are separated. Feature 1 denotes (3, 0),
feature 2 denotes (5, 3) and feature 3 denotes (8, 10).

5 VALIDITY CHECKING

OF ENERGY FEATURES

In this section, three common classification model,
including support vector machine (SVM), Radial basis
function (RBF) neutral network and the nearest neigh-
bor principle, are introduced for validity checking using
features selected by the method presented in this paper.

Due to the different energy level of PD patterns, the
energies of EM signals are at a different level, for example,
the energy vector of EM signals from needle is much larger
than the others (Fig. 3). Therefore, normalization should
be conducted to eliminate the interference of energy level

e =
(

ex −mean(ex)
)/

std(ex) (6)

where ex is the energy feature vector, mean(ex) is the
mean value of the vector, std(ex) is the standard devia-
tion of the energy feature vector

Using LIBSVE [13] to train and test the samples, ra-
dial bases function (RBF) was chosen to be the base func-
tion

exp
(

−γ|u− v|2
)

(7)
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Fig. 10. The ternary diagram of the four types of PD patterns

Table 1. Singular values of E from four types of PD patterns

PD pattern δ1 δ2 δ3 δ4

Floating 137 36 10 5

Needle 0.0077 0.0056 9.2× 10−4 5.6× 10−4

Oil clearance 0.006 0.0017 4.6× 10−4 3.3× 10−4

Void in pressboard 0.0016 4.4 × 10−4 3.8× 10−4 1.7× 10−4

Table 2. The ratio of singular values from four type of pd patterns

PD pattern ∆δ12 ∆δ23 ∆δ34

Floating 0.74 0.72 0.5

Needle 0.27 0.84 0.39
Oil clearance 0.72 0.73 0.28

Void in pressboard 0.73 0.14 0.55

where all the parameters in (5) are the default value.
gamma is 1/7, where 7 is the number of energy features.
Penalty factor C is 1.

All the classification results are shown in the Tables 4–
7. The classification result using SVM is very satisfactory
(Tab. 4). Table 5 shows the classification result using RBF
neutral network with the Mean Squared Error (MSE) 0.05
and 75 neurons, while Table 6 shows the result from RBF
neutral network with the MSE 0.01 and 350 neurons.
It can be seen from the classification results that there
is an over fitting with the MSE 0.01 and 350 neurons.
Although the number of neurons is more, the accuracy of
classification is lower. This means that for RBF neutral
network, a high number of neurons may not lead to good
accuracy of classification.

It also can be seen from the classification result that
the classification accuracy of SVM and nearest neigh-
bor principle is excellent, while the classification result
of RBF neutral network for floating PD and needle PD
is not very satisfactory (Tab. 6).

As a conclusion, one may say that although any of
parameters was not optimized for the three classification
model, the classification results were very good. There-
fore, the energy features selected by the method of this
paper are very effective for classification of PD patterns.

Table 3. Measuring voltage and the number of samples of EM
signals from the four type PD patterns

PD pattern
Measuring voltage Number

(kV) of sample

Floating 20 229

Needle 27 301
Oil clearance 22 599

Void in pressboard 7.5 428

Table 4. Classification result of SVM

PD pattern
Classification result Accuracy

correct number/test number (%)

Floating 49/50 98

Needle 58/60 96.7

Oil clearance 118/120 98.3

Void in pressboard 80/80 100

Table 5. Classification result of RBF neutral network
MSE 0.05 and neurons 75

PD pattern
Classification result Accuracy

correct number/test number (%)

Floating 42/50 84

Needle 58/60 96.7

Oil clearance 117/120 97.5

Void in pressboard 79/80 98.75

Table 6. Classification result of RBF neutral network
MSE 0.01 and neurons 350

PD pattern
Classification result Accuracy

correct number/test number (%)

Floating 43/50 86

Needle 52/60 86.7

Oil clearance 115/120 95.8

Void in pressboard 80/80 100

Table 7. Classification result of nearest neighbor principle

PD pattern
Classification result Accuracy

correct number/test number (%)

Floating 48/50 96

Needle 59/60 98.3

Oil clearance 119/120 99.2

Void in pressboard 80/80 100
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6 CONCLUSION

In this paper, a new method of feature selection of
EM signals was presented, the energy vector of EM sig-
nals was analyzed using WPD and the energy features in
different frequency band were selected using SVD. Then,
different types of PD patterns in a power transformer
were identified using energy features selected in this pa-
per. Moreover, the depth of WPD is a main factor of
feature selection. If the depth is shallow, there will not
effective variables for classification, at the same time, if
the depth is deep enough there will be too many vari-
ables selected. So that, in Section 2, the energy of each
node in the WPD tree was treated as the energy feature
candidate, and the depth of WPD should be deep enough
for feature selection, the depth is eight in this paper. Due
to the large number of energy feature candidates, SVD
was introduced to extract energy features. After the pro-
cessing of SVD, the redundancy among the feature candi-
dates should be eliminated. Finally, seven energy features
were selected for classification. In Section 4, three com-
mon classification models were introduced to check the
availability of energy features and the results were very
satisfactory.
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