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ON SOME STRATEGIES FOR COMPUTER SIMULATION

OF THE WAVE PROPAGATION USING FINITE

DIFFERENCES I. ONE–DIMENSIONAL FDTD METHOD

L’ubomı́r Šumichrast
∗

Some strategies used in the computer simulation of wave phenomena by means of finite differences in time-domain
(FDTD) method are reviewed and discussed here. It is shown that the wave equation in its discretized form possesses
different properties in comparison with the true differential formulation. In this part the issues of stability and numerical
dispersion are thoroughly investigated for the one-dimensional case represented here by waves on transmission lines and
transversal electromagnetic plane wave.
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1 INTRODUCTION

The solution of partial differential equations by numer-
ical methods is subject of many classical mathematical
books. The approximation of derivatives by finite differ-
ences in differential equations is one of the most trans-
parent and straightforward methods used. The mathe-
matical aspects of the method are in depth treated in
eg [1–4]. The special aspects of numerical modeling of
the wave propagation are from the engineering point of
view treated in many books too, only a few mentioned
here from the whole huge palette available up to date are
eg [5–8]. The articles in journals can be counted to thou-
sands and the citation of only the most important ones
would be longer than this whole paper. The interested
reader can, using available search machines, easily find
them on himself. However the seminal work of Yee [9] on
the explicit FDTD method for vectorial wave components
in three dimensions — probably the most cited publica-
tion in the field — is certainly worth to be mentioned. In
this tutorial paper the substantial features of the FDTD
method will be reviewed and thoroughly analysed, first
for the one dimensional and subsequently for the more
dimensional cases.

2 WAVE PHENOMENA

OF ELECTROMAGNETICS

The wave propagation is a typical phenomena occur-
ring in electrodynamics, eg voltage and current waves
propagating on transmission lines, or electromagnetic
waves propagating in space. The main mathematical ve-
hicle used for description of their common features is the
wave equation. Only in a very few cases the solutions of
the wave equation can be obtained analytically. In pre-
vailing number of situations some numerical method must
be used.

The voltages and currents, u(z, t), i(z, t), on homoge-
neous and lossless transmission lines are described by the

telegraphist equations

R0i(z, t) + L0
∂i(z, t)

∂t
= −∂u(z, t)

∂z
, (1)

G0u(z, t) + C0
∂i(z, t)

∂t
= −∂u(z, t)

∂z
, (2)

where R0 , G0 , L0 and C0 are distributed resistance,
conductance, inductance and capacitance of the line. By
separation of variables in (1) and (2) one arrives to the
wave equation of the form

1

c2
∂2f(z, t)

∂t2
+

2β

c

∂f(z, t)

∂t
+ α2f(z, t)− ∂2f(z, t)

∂z2
= 0,

(3)

with α =
√
R0G0 , β = 1

2

(

R0

√

C0/L0+G0

√

L0/C0

)

and

c = 1/
√
L0C0 , valid for both u(z, t) and i(z, t).

Assuming the solution in form of a steady harmonic
wave-amplitude-distribution with the wavenumber k ,
(and wavelength λ = 2π/k ), ie f(z, t) ≈ φ(t) exp(−jkz)
one easily arrives to the solution of type

f(z, t) ≈ exp(−βct) exp
{

−j(kz ± ωt)
}

, (4)

where: ω = c
√

k2 + α2 − β2 , (5)

representing thus the direct and reverse wave attenuated
in time and propagating along z with the phase velocity

vp(k) = ω/k = c
√

1 + (α2 − β2)/k2 . (6)

Substitution f(z, t) ≈ f0(z, t) exp(−β ct) into (3)
leads to the equation

1

c2
∂2f0(z, t)

∂t2
+ (α2 − β2)f0(z, t)−

∂2f0(z, t)

∂z2
= 0 (7)

for the non-attenuated part of f(z, t) in form f0(z, t) ≈
exp {−j(kz ± ωt)} .
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From (5) the frequency dependence (dispersion) of the
wavenumber is

k(ω) =

√

(ω/c)
2
+ β2 − α2 , (8)

leading to the phase and group velocity

vp(ω) = ω/k = c/
√

1 + c2ω−2(β2 − α2) , (9)

vg(ω) = dω/dk = c
√

1 + c2ω−2(β2 − α2) , (10)

with vpvg = c2.

For β2 − α2 > 0, ie for the group velocity higher
than the phase velocity, vg > vp , we have the case of

the anomalous dispersion, while for β2 − α2 < 0, ie for
the group velocity lower than the phase velocity, vg < vp ,
we have the case of the normal dispersion. Since for the
transmission line

β2 − α2 =
1

4

(

R0

√

C0/L0 −G0

√

L0/C0

)2 ≥ 0 (11)

holds, the transmission line with losses is an anomalous-
dispersion-system (provided the distributed parameters
of the line are constants independent of ω ).

A special case – the dispersion-free line with losses –
occurs if β2−α2 = 0, ie if the condition R0/G0 = L0/C0

is met. Then k(ω) = ω/c and vp = vg = c .

In fact, due to the causality theorem, physically dis-
persion goes always with losses and vice versa. The above
mentioned case of dispersion-free line with losses must be
understood as an approximation for negligible dispersion
only. In an opposite case, when losses are negligible, we
may omit the term exp(−βct) in (4) completely and con-
sider only the dispersion effects as described by (7).

3 LOSSLESS AND DISPERSION–FREE

WAVE PROPAGATION

For the lossless and dispersion-free line, ie if R0 = 0
and G0 = 0, the telegraphist equations (1) and (2) take
the simple form

L0
∂i(z, t)

∂t
= −∂u(z, t)

∂z
,

C0
∂u(z, t)

∂t
= −∂i(z, t)

∂z
.

(12)

The one-dimensional variant of the plane electromag-
netic field describing the transversal components of elec-
tric and magnetic field vectors Ex , Hy propagating along
the z -axis in homogeneous, isotropic and lossless media
with permittivity ε and permeability µ is described by
the Maxwell equations

µ
∂Hy(z, t)

∂t
= −∂Ex(z, t)

∂z

ε
∂Ex(z, t)

∂t
= −∂Hy(z, t)

∂z
,

(13)

that are analogous to (12).

Having introduced into (12) the normalised quantities

f(z, t) = u(z, t), g(x, t) = Z0i(x, t), with Z0 =
√

L0/C0 ,

or into (13) f(z, t) = Ex(z, t), g(z, t) = Z0Hy(z, t), with

Z0 =
√

µ/ε , both (12) and (13) are represented by the
coupled pair of equations of the first order

∂f(z, t)

c∂t
= −∂g(z, t)

∂z
,
∂g(z, t)

c∂t
= −∂f(z, t)

∂z
, (14)

where c = (L0C0)
−1/2 , or c = (µε)−1/2 . From (12), (13),

or (14), the one-dimensional wave equation of the type

1

c2
∂2f(z, t)

∂t2
− ∂2f(z, t)

∂z2
= 0 (15)

can be easily obtained, valid in this form also for g(z, t),
u(z, t), i(z, t), Ex(z, t), or Hy(z, t).

The wave character of solutions of (15) is at best man-
ifested by the impulse response h(z, t) being the solution
of

1

c2
∂2h(z, t)

∂t2
− ∂2h(z, t)

∂z2
= δ(z)δ(t) , (16)

where δ(t) and δ(z) are the Dirac delta-impulses in time
and space. It can be easily obtained for a case of the
infinite homogeneous space in form of the causal time
response

h(z, t) =
c

2
1(t) {1(z + ct)− 1(z − ct)} . (17)

where 1(·) denotes the unit-step (Heaviside) function. In
accordance with the causality principle the impulse re-
sponse is non-zero only for t > 0 as represented by 1(t).
Both, the leading and trailing edge of the rectangular im-
pulse 1(z + ct) − 1(z − ct) are running away from the
origin, representing thus the direct and the reverse wave.

4 SIGNAL DISTORTION DUE

TO DISPERSION EFFECTS

If the temporal Fourier transform F (z, ω) of the signal
f(z, t) is defined as

F (z, ω) =

∫ ∞

−∞

f(z, t) exp(−jωt)dt , (18)

then, in the lossless case, the wave equation (7) for the
spectral density F (z, ω) takes the form

∂2F (z, ω)

∂z2
+ k2(ω)F (z, ω) = 0 , (19)

where k(ω) = ω/vp is the frequency-dependent wavenum-
ber. The solution of (19) for the direct wave reads

F (z, ω) = F (0, ω) exp(−jkz) , (20)

where F (0, ω) is the initial value corresponding to the
“input” signal f(0, t), f(0, t) ⇔ F (0, ω). The “output”
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signal f(z, t) in time domain is obtained through the
inverse Fourier transform, ie

f(z, t) =
1

2π

∫ ∞

−∞

F (0, ω) exp(−jkz) exp(jωt)dω . (21)

Let us take the “input” signal f(0, t) ⇔ F (0, ω) in form
of a modulated impulse

f(0, t) = s0(t) exp(jω0t) , (22)

with the modulating complex envelope signal s0(t) and
harmonic carrier oscillations exp(jω0t). The spectral den-
sity F (0, ω) is given as

F (0, ω) = S0(ω − ω0) , (23)

where S0(ω) ⇔ s0(t) is the spectral density of s0(t).

The “output” signal given by (21) equals

f(z, t) =
1

2π

∫ ∞

−∞

S0(ω − ω0) exp(−jkz) exp(jωt)dω .

(24)
Expanding k(ω) in case of a dispersive medium into the
Taylor series

k(ω) = k0 + τg(ω − ω0) +

∞
∑

n=2

dn(ω − ω0)
n, (25)

where k0 = k(ω0), τg = k′(ω0), dn = k(n)(ω0)/n! , yields
the expression

f(z, t) = s(t− z/vg) exp [jω0(t− z/vp)] , (26)

where vp = ω0/k0 , and vg = 1/τg , and

s(t) =
1

2π

∫ ∞

−∞

S0(ω) exp
{

−jz(d2ω
2 + d3ω

3 + . . . )
}

× exp(jωt)dω. (27)

The result accordingly (26) means that the carrier wave
propagates with the phase velocity vp , the modulation-
envelope signal s(t) propagates with the group velocity
vg and is equal to s0(t) deteriorated by the dispersion
terms as given by (27). Thus any other dependance of
k(ω) on ω than linear, k ∼ ω , leads to the deterioration
of the “output” signal due to dispersion.

Restricting ourselves only to to the first term of the
series in (27) one arrives to the deterioration of the signal
form due to dispersion of the second order

s(t) =
1

2π

∫ ∞

−∞

S0(ω) exp
(

−jd2zω
2
)

exp(jωt)dω , (28)

as indicated by the quadratic phase factor exp(−jd2zω
2).

For the input envelope in a special form of the Gaus-
sian impulse

s0(t) = A0 exp
(

−t2/4w2
0

)

(29)

with the effective impulse-half-width w0 , using the
Fourier transform identity

exp
(

−t2/4w2
0

)

⇔ 2w0

√
π exp

(

−ω2w2
0

)

, (30)

one obtaines

S(ω) = S0(ω) exp
(

−jd2zω
2
)

=

2w0A0

√
π exp

{

−ω2(w2
0 + jd2z)

}

and its inverse

s(t) =
w0A0

√

w2
0 + jd2z

exp
{

−t2
/

4(w2
0 + jd2z)

}

. (31)

It can be further expressed as

s(t) = A exp
{

−t2/4w2
}

exp
{

jΩt2
}

, (32)

where all, A , w , and Ω, are functions of z , depending
on the dimensionless parameter Φ = d2z/w

2
0

A = A(z) = A0

/
√

1 + jΦ , (33)

w = w(z) = w0

√

1 + Φ2 , (34)

Ω = Ω(z) = Φ
/

4w2 (35)

It can be easily seen, that the Gaussian form of the
impulse envelope remains preserved, and that due to the
dispersion the halfwidth of the impulse increases (impulse
is broadened), and its instantaneous carrier frequency
ωinst = ω0 + Ωt is linearly swept either to the higher or
to the lower frequencies (chirping), depending on the sign
of the second order dispersion coefficient d2 . For eg the
case of the transmission line analysed above

k′′(ω) = c(β2 − α2)
/[

(ω)2 + c2(β2 − α2)
]3/2

(36)

holds. Speaking optically, for the anomalous dispersion
d2 > 0 the so called “blue shift” (towards higher frequen-
cies) in carrier takes place, while for the normal dispersion
d2 < 0 the “red shift” (towards lower frequencies) occurs.

5 EXPLICIT AND IMPLICIT DISCRETE

MODELING OF THE WAVE PROPAGATION

To solve (14), or (15) numerically, first the discreti-
zation of the continuous values f(z, t), g(z, t) must be
performed, ie one has to deal with the set of discrete
values f |nm = f(m∆z , n∆t), g|nm = g(m∆z, n∆t), on
the equidistant grid of the discrete points zm = m∆z ,
tn = n∆t .

The so-called staggered grids are often used when deal-
ing with (14). The discrete values of f(z, t) are taken only

for even steps, f |2n2m = f(2m∆z, 2n∆t), and of g(z, t)

only for odd steps, g|2n+1
2m+1 = g([2m+ 1]∆z, [2n+ 1]∆t).

Denoting subsequently 2∆z and 2∆t as the new dis-
cretization intervals one has to deal with two, mutually
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half-step-shifted grids, eg f |nm = f(m∆z, n∆t) in the

discrete points zm = m∆z , tn = n∆t and g|n+1/2
m+1/2 =

g
(

[m + 1
2 ]∆z , [n + 1

2 ]∆t

)

in the points zm+1/2 = [m +
1
2 ]∆z , tn+1/2 = [n+ 1

2 ]∆t . Sometimes instead of double-

staggered grids (in spatial and time direction) a single-
staggered grid in the spatial direction only is used, ie f |nm
and g|nm+1/2 as illustrated in Fig. 1.

Fig. 1. (a) – double staggered grid, • = f |nm , � = g|
n+1/2
m+1/2

,

(b) – single staggered grids, • = f |nm , � = g|n
m+1/2

The numerical algorithm representing (14) is quite
simple. The use of the first central differences yields

f |n+1
m − f |nm
c∆t

= −
g|n+1/2

m+1/2 − g|n+1/2
m−1/2

∆z
, (37)

g|n+1/2
m+1/2 − g|n−1/2

m+1/2

c∆t
= −f |nm+1 − f |nm

∆z
. (38)

Eliminating g|n±1/2
m±1/2 from (37) and (38) one arrives to

the discrete version of the wave equation (15)

f |n+1
m − 2f |nm + f |n−1

m

c2∆2
t

− f |nm+1 − 2f |nm + f |nm−1

∆2
z

= 0 .

(39)

An equation of the same form can be obtained for g
∣

∣

n±1/2

m±1/2

too, by eliminating f |nm instead of g|n±1/2
m±1/2 from (37) and

(38).

For the wave propagation simulation either (39) alone,
or (37) together with (38) is used. The computations are
performed in the two-dimensional computational window.
The spatial dimension is for x ∈ (0, xmax), with finite
number of values m = 0, 1, 2, . . . ,M , and the equidis-
tant discretization interval ∆x = xmax/M . The second
dimension (the time axis) represents the propagation of
the wave in time by the “forward marching” algorithm.

In order to use (39) for the “running time” index n =

0, 1, 2, . . . , the starting initial values f
∣

∣

0

m
, f

∣

∣

1

m
in all

points m = 0, 1, 2, . . . ,M together with the “boundary”
values f |nm for m = 0 and m = M in all time points
n = 0, 1, 2, . . . must be given as sketched in Fig. 2a.

The discrete initial values f
∣

∣

0

m
, f

∣

∣

1

m
approximate in

discrete form the continuous initial conditions f(x, t)|t=0

and ∂f(x, t)/∂t|t=0 approximating f(x, t)|t=0 by f
∣

∣

0

m

and ∂f(x, t)/∂t|t=0 by
(

f
∣

∣

1

m
− f

∣

∣

0

m

)

/∆t . The discrete

boundary conditions f
∣

∣

n

0
, f

∣

∣

n

M
approximating f(x, t)|x=0

by and f(x, t)|x=xmax
all needed for the unique solution

of (15).

When using doubly staggered grids with (37) and
(38) the initial time derivative ∂f(x, t)/∂t|t=0 is en-

coded in g
∣

∣

1/2

m+1/2
, since

(

f
∣

∣

1

m
− f

∣

∣

0

m

)

/∆t = −
(

g
∣

∣

1/2

m+1/2
−

g
∣

∣

1/2

m−1/2

)

/∆z , as depicted in Fig. 2b.

For singly staggered grids (Fig. 2c) instead of for-
ward time differences one has to deal with the central

differences, since
(

f
∣

∣

1/2

m
− f

∣

∣

−1/2

m

)

/∆t = −
(

g
∣

∣

0

m+1/2
−

g
∣

∣

0

m−1/2

)

/∆z .

Equations (37), (38) and (39) can be written in the
form

f |n+1
m = f |nm − b

(

g|n+1/2
m+1/2 − g|n+1/2

m−1/2

)

, (40)

g|n+1/2
m+1/2 = g|n−1/2

m+1/2 − b
(

fn
m+1 − f |nm

)

, (41)

f |n+1
m = f |n−1

m − 2f |nm + b2
(

f |nm+1 − 2f |nm + f |nm−1

)

,
(42)

where b = c∆t/∆z (43)

Fig. 2. Boundary values for: ◦ = f |n0 , f |nM . Initial values for: (a) – • = f |0m , f |1m for the wave equation (42), (b) – • = f |0m , �=g|
1/2
m+1/2

for double-staggered grid accordingly (40) and (41), (c) – • = f |0m , � = g|0
m+1/2

for single-staggered grid accordingly (44) and (45).
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Fig. 3. Calculations: – previously calculated values, (a) – explicit
scheme � – the value to be directly calculated, (b) – implicit scheme

– previously calculated values, � – the values to be resolved

is the so called Courant number. Here the “explicit” na-

ture of the formulation is clearly visible. For the “running
index” n = 0, 1, 2, . . . , the new values f |n+1

m in the time

layer tn+1 = (n + 1)∆t can be explicitly obtained from

the known “previous” values f |nm , f |n−1
m , f |nm−1 , f |nm+1 ,

as sketched in Fig. 3a without solving any equations (ie

there is no matrix inversion necessity).

When using (42), after having obtained all f |nm values,

the values g|n+1/2
m+1/2 can be obtained from (40) and (41)

provided g|1/21/2 is given (fixing thus the constant level of

all g|n+1/2
m+1/2 ).

One can proceed with the computation also directly

using both (40) and (41) intermittently. In the course

of computation it yields both the full-step values f |nm
and the half-step values g|n+1/2

m+1/2 simultaneously. The ini-

tial conditions must be given in the form f |0m in all

points m = 0, 1, 2, . . . ,M and g|1/2m+1/2 in points m =

0, 1, 2, . . . ,M−1 as shown in Fig. 2b. The boundary con-

ditions are the same as above.

Instead of the explicit formulation the implicit Crank-
Nicolson discretization [10] of (14) can be used. Using the
single staggered grid as in Fig. 1b it takes the form

f |n+1
m − f |nm
c∆t

= −
g|n+1

m+1/2 − g|n+1

m−1/2

2∆z
−

g|nm+1/2 − g|nm−1/2

2∆z
,

(44)

g|n+1

m+1/2 − g|nm+1/2

c∆t
= −

fn+1

m+1 − f |n+1
m

2∆z
−

fn
m+1 − f |nm

2∆z
.

(45)

These two equations can be recast in the following form

f |n+1
m+1 −

(

2 + 4b−2
)

f |n+1
m + f |n+1

m−1 = A|nm , (46)

where A|nm is either

A|nm = 8b−1
(

g|nm+1/2 − g|nm−1/2

)

−
f |nm+1 +

(

2− 4b−2
)

f |nm − f |nm−1 , (47)

or, after having eliminated g|nm±1/2 from (44) and (45),

A|nm = −2
[

f |nm+1 −
(

2− 4b−2
)

f |nm + f |nm−1

]

−
f |n−1

m+1 +
(

2 + 4b−2
)

f |n−1
m − f |n−1

m−1 , (48)

as it is schematically sketched in Fig.3b.

In (48) only the values f |n... and f |n−1
... in two previous

time layers occur. The initial values pertaining to (47) are
as in Fig. 2c, while for (48) the initial values as in Fig. 2a
must be used.

The set of M − 1 equations for m = 1, 2, . . . ,M −
1 defined by (46), with unknowns f |n+1

m+1 , f |n+1
m and

f |n+1
m−1 , with f |n+1

0 , f |n+1
M being the known boundary

values, represents a system with the tridiagonal matrix
and, denoting η = −

(

2 + 4b−2
)

, reads as follows











η 1
1 η 1

. . . . . . . . .
1 η 1
1 η





















f1
f2
. . .

fM−2

fM−1











n+1

=











A1

A2

. . .
AM−2

AM−1











n

−











f0
0
. . .
0
fM











n+1

(49)

This set of equations can be quickly and efficiently
solved by the Gauss elimination method (Thomas algo-
rithm) [4] for each subsequent step n + 1. The inverse
matrix pertaining to the tridiagonal matrix is a full ma-
trix. Therefore, even if the matrix in (49) is for each step
n+ 1 the same, it is more efficient to perform the Gauss
elimination for each step, rather than to invert the ma-
trix once, and for all the subsequent steps multiplying the
inverted matrix with the RHS of (49).

After having obtained all f |n+1
m the values g|n+1

m+1/2

are subsequently calculated in the explicit way from (45)

g|n+1
m+1/2 = g|nm+1/2 −

b

2

(

f |n+1
m+1 − f |n+1

m + f |nm+1 − f |nm
)

.

(50)
When using A|n... from (47) the values g|n... must be cal-
culated immediately after each n-th step has been done,
since the values g|nm+1/2 are needed in (47) for the next

n+1 step. When proceeding with (48) all values g|nm+1/2

can be again calculated when all f |nm are known.

6 POWER CONSERVATION AND

NUMERICAL DISPERSION

The fundamental solution of (15) in form of a complex
harmonic wave with angular frequency ω , propagating in
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Fig. 4. Time oscillations of a half-period sinusoidal space-distri-
bution standing wave, for k∆z = π/22, b = c∆t/∆z = 1.6,

vp/c = 1.0013

Fig. 5. The normalised phase velocity vp/c and the normalised

group velocity vg/c dependence on the Courant number b =

c∆t/∆z for the explicit method, k∆z = π/2

Fig. 6. The normalised phase velocity vp/c and the normalised

group velocity vg/c dependence on the Courant number b =

c∆t/∆z for the implicit method, k∆z = π/2

positive direction of the z -axis and having the wavenum-
ber k , k = 2π/λ , where λ is the wavelength, is given
as

f(z, t) = exp(jωt) exp(−jkz) . (51)

Due to (15) the “dispersion relation”

ω = ck (52)

holds, defining thus the phase velocity vf = ω/k = c ,
and the group velocity vg = dω/dk = c of the wave, both
constant, independent of the frequency or wavenumber.

Taking the discretised expression (51), ie

f |nm = exp(jωn∆t) exp(−jkm∆z) , (53)

in the form
f |nm = ξn exp(−jkm∆z) , (54)

where k is the wavenumber of single spatial harmonics,
one can, using (39), investigate when the absolute value
|ξ| is smaller, larger or equal to one, corresponding thus
to the wave power attenuation, wave power amplification,
or wave power conservation (the von Neumann stability
analysis). From the phase of ξ one can infer also the
phase and group velocity pertaining to the particular
frequency ω or wavenumber k . This procedure called the
von Neumann stability analysis was briefly described in
[10] and more rigorously in [11].

Substitution of (54) into (39) yields the equation

ξ2 − 2Bξ + 1 = 0 , (55)

where
B = 1− 2b2 sin2(k∆z/2) , (56)

with b = c∆t/∆z the Courant number (43). The solution
of (55) reads

ξ = B + j
√

1−B2 , (57)

with ξ of unit magnitude, |ξ| = 1, only if B2 6 1,
ie−1 6 B 6 1 leading thus to the condition

(c∆t/∆z) sin(k∆z/2) 6 1 . (58)

In the sense of the sampling theorem the maximum
wavenumber kmax representable by the sampling interval
∆z is kmax = π/∆z . This leads to sin(k∆z/2)|max = 1,
giving thus the condition for the power conservation

c∆t 6 ∆z , b 6 1 , (59)

called the Courant-Friedrichs-Lewy (CFL) condition [12].
Since these highest wavenumber components are always
inherently present in any shape of wave amplitude dis-
tribution — at least in form of numerical noise due to
round-off errors — (59) must be considered as an ulti-
mate upper limit.

Notice that if the zero boundary conditions are ap-
plied then the maximum wavenumber representable by
the sampling interval ∆z is kmax = π/2∆z , leading to
the ultimate limit

c∆t 6
√
2∆z , b 6

√
2 . (60)

Only if the condition of power conservation |ξ| = 1 is
met, ξ can be put equal to ξ = exp(jω∆t) as in (53)
with

phase(ξ) = ω∆t = arccos(B) (61)
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or
cos(ω∆t) = 1− 2b2 sin2(k∆z/2). (62)

We thus arrive for numerical simulation of the wave phe-
nomena to the dispersion relation between ω and k

ω(k) =
2

∆t
arcsin

{

b sin(k∆z/2)
}

. (63)

or written in other well-kown form [5-8]

sin(ω∆t/2)

c∆t
=

sin(k∆z/2)

∆z
. (64)

Observe that for the limiting values k∆z = π , b =
c∆t/∆z = 1, ie for b sin(k∆z/2 = 1 in (63), the max-
imum representable frequency ωmax = π/∆t , pertaining
to the time step ∆t in accordance with the sampling the-
orem, is reached.

The wavenumber-dependent phase and group velocity,
vp(k) = ω(k)/k , vg(k) = dω(k)/dk for the numerically-
modeled wave propagation becomes

vp(k) =
2

k∆t
arcsin

{

b sin(k∆z/2)
}

, (65)

vg(k) = c
cos(k∆z/2)

√

1− b2 sin2(k∆z/2)
. (66)

The above discussed effects are purely numerical arte-
facts, termed numerical dispersion and numerical power
amplification. They can lead in case of waves consist-
ing of more frequency components to the deterioration
of the amplitude and phase distribution in the course of
the wave propagation simulation.

Note that only for b = c∆t/∆z = 1 the true physical
values vp = c and vg = c are reached as seen from (63),
(65), and (66), ie for b = 1 the numerical simulation is
free from numerical artefacts.

The effect of the power amplification is illustrated
in Figure 4, where the time oscillation of a half-period
sinusoidal-space-distribution standing-wave along the z -
axis for 29 time steps with the parameter k∆z = π/22,
and the Courant number b = c∆t/∆z = 1.6, is depicted.
The maximum representable wavenumber due to the sam-
pling theorem kmax , pertaining to the zero boundary con-
ditions is kmax∆z = π/2. From (56) it gives B = −1.56
and |ξ| ≈ 2.757. After 29 steps this leads to the overall

amplification factor of |ξ|29 ≈ 5.9× 1012 . The numerical
noise due to the round-off errors on approximately 14th-
15th decimal place (corresponding to the 64-bit double-
precision machine representation of real numbers), leads
after the amplification to sharp random oscillations visi-
ble in Fig. 4.

The von Neumann analysis applied to implicit discreti-
sation yields

ξ2 − 2Dξ + 1 = 0 (67)

where

D =
1− b2 sin2(k∆z/2)

1 + b2 sin2(k∆z/2)
. (68)

Observe that D in (68) approaches B in (56) for
b sin(k∆z/2) ≪ 1. The solution of (67) yields

ξ =
1− b2 sin2(k∆z/2) + 2jb sin(k∆z/2)

1 + b2 sin2(k∆z/2)
, (69)

with |ξ| = 1 independently of any condition, and

phase(ξ) = ω∆t = arccos
1− b2 sin2(k∆z/2)

1 + b2 sin2(k∆z/2)
, (70)

leading instead of (63) to the dispersion relation of the
form

tan(ω∆t/2)

c∆t
=

sin(k∆z/2)

∆z
.

Now

ω(k) =
2

∆t
arctan {b sin(k∆z/2)} (71)

holds, hence for the limiting value of the explicit algo-
rithm b sin(k∆z/2) = 1 in (63) the implicit algorithm
leads to ω∆t = π/2 only, ie for the same step ∆t only
to the half frequency value as compared to the explicit
algorithm. The maximum representable frequency value
ωmax = π/∆t is reached in the limit , b = c∆t/∆z → ∞
as given by (71).

There is no limitation of the kind of CFL condition
(59) upon the implicit formulation, ie the implicit method
is always absolutely power conserving.

The phase and the group velocity vp , and vg read

vp(k) =
2

k∆t
arctan

{

b sin(k∆z/2)
}

, (72)

vg(k) = c
cos(k∆z/2)

1 + b2 sin2(k∆z/2)
. (73)

For both, explicit as well as for the implicit method, in
the limit ∆t → 0, the velocities vp and vg reach the

values vp ≈ 2c sin(k∆z/2)
/

k∆z and vg ≈ c cos(k∆z/2).
Character of the dependence of vp and vg on ∆t , as
seen from Fig. 5 and 6, is increasing for the explicit and
decreasing for the implicit method.

7 DISPERSION–FREE MEDIUM WITH LOSSES

The telegraphist equations for transmission lines with
losses read accordingly (1) and (2)

L0
∂i

∂t
+R0i = −∂u

∂z
,

C0
∂u

∂t
+G0u = − ∂i

∂z
. (74)

With the choice of parameter-ratio L0G0 = R0C0 rep-
resenting the dispersion-free transmission line, the wave

impedance remains equal to Z0 =
√

L0/C0 , and the
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phase velocity remains equal to c = (L0C0)
−1/2 . The at-

tenuation factor will be α = β =
√
R0G0 . Such a trans-

mission line, free of physical dispersion effects, enables
one to investigate the influence of losses on the proper-
ties of discretised numerical procedures of wave propa-
gation simulation. Moreover, in such a case the junction
between lossless line and a lossy line remains reflection-
free and the wave passes completely from the lossless line
into the lossy line and will be gradually attenuated there.

In the normalised form instead of (14) one obtains

∂f(z, t)

c∂t
+ αf(z, t) = −∂g(z, t)

∂z
, (75)

∂g(z, t)

c∂t
+ αg(z, t) = −∂f(z, t)

∂z
, (76)

and instead of (15) the wave equation with attenuation
terms

∂2f(z, t)

c2∂t2
+2α

∂f(z, t)

c∂t
+α2f(z, t)− ∂2f(z, t)

∂z2
= 0 , (77)

leading to the solution of attenuated harmonic-wave type

f(z, t) ≈ exp
{

jω(t− z/c)
}

exp(−αct) , (78)

with the attenuation factor exp(−αct).

The explicitly discretised forms of (75) and (76) read

θAf |n+1
m − θSf |nm
c∆t

= −
g|n+1/2

m+1/2 − g|n+1/2
m−1/2

∆z
, (79)

θAg|n+1/2
m+1/2 − θSg|n−1/2

m+1/2

c∆t
= −f |nm+1 − f |nm

∆z
, (80)

where θA,S = 1 ± ϑ , ϑ = αc∆t/2 and the discretised
wave equation (77) reads

θ2Af |n+1
m − 2θAθSf |nm + θ2Sf |n−1

m

c2∆2
t

−

fn
m+1 − 2f |nm + f |nm−1

∆2
z

= 0 . (81)

The von Neumann’s stability analysis yealds instead
of (55) the equation

(1 + ϑ)2ξ2 − 2(B − ϑ2)ξ + (1− ϑ)2 = 0 (82)

with the solution

ξ =
{

(B − ϑ2) + j
√

(1− ϑ2)2 − (B − ϑ2)2
}/

(1 + ϑ)2,

(83)

where B is defined in (56) as B = 1− 2b2 sin2(k∆z/2).

The value in square root in (83) must be positive,
ie instead of the condition −1 6 B 6 1 leading to (58)
one obtains the condition

2ϑ2 − 1 6 B 6 1 , (84)

leading to b2 sin2(k∆z/2) 6 1− ϑ2 , or

c∆t

√

sin2(k∆z/2)
/

∆2
z + α2/4 6 1 . (85)

For sin(k∆z/2)|max = 1 the ultimate condition reads

c∆t

/

√

1− α2c2∆2
t/4 6 ∆z , (86)

or written alternatively (c∆t)
−1 >

√

1/∆2
z + α2/4. Both

(85) and (86) show that due to the attenuation terms the
requirements concerning the stability of the numerical
procedure are generally more stringent than condition
(58).

If (85) holds, then the absolute value |ξ| equals to

|ξ| = |1− ϑ|/(1 + ϑ) . (87)

Since |ξ| < 1, the attenuation of the simulated wave due
to lossy transmission line always takes place. For small
ϑ , ϑ ≪ 1, one obtains

|ξ| ≈ (1−ϑ)(1−ϑ+ϑ2 − . . . ) = 1− 2ϑ+2ϑ2 − . . . (88)

in agreement with the first few terms of the Taylor ex-
pansion of the physical attenuation factor

exp(−αc∆t ≈ 1− αc∆t + (αc∆t)
2/2− . . . . (89)

The phase term analogous to (61) is now

phase(ξ) = ω∆t = arccos
B − ϑ2

1− ϑ2
(90)

giving for the same dimensionless parameters k∆z , kc∆t

higher value of ω in comparison with (61), ie higher phase
velocity as in a lossless case.

For the implicit discretisation instead of (44) and (45)
one obtains

θAf |n+1
m − θSf |nm
c∆t

=

−
g|n+1

m+1/2 − g|n+1
m−1/2

2∆z
−

g|nm+1/2 − g|nm−1/2

2∆z
, (91)

θAg|n+1
m+1/2 − θSg|nm+1/2

c∆t
=

− fn+1
m+1 − f |n+1

m

2∆z
− fn

m+1 − f |nm
2∆z

(92)

and instead of (46) and (48) the set of equations

fn+1
m+1 − (2 + 4b−2θ2A)f |n+1

m + f |n+1
m−1 =

− 2
[

fn
m+1 − (2− 4b−2θAθS)f |nm + f |nm−1

]

− fn−1
m+1 + (2 + 4b−2θ2S)f |n−1

m − f |n−1
m−1 . (93)
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Fig. 7. Illustrative propagation of a Gaussian time-impulse excited in one boundary point to the second boundary point and its reflection
(a) – on the metallic boundary (zero boundary condition), (b) – on the transparent boundary

The von Neumann’s stability analysis leads now to

ξ =
1− b2 sin2(k∆z/2)− ϑ2 + j2b sin(k∆z/2)

{(1 + ϑ)2 + b2 sin2(k∆z/2)}
. (94)

The magnitude |ξ| is in contrast to the explicit method
(87) given by

|ξ| =

√

[(1 + ϑ2) + b2 sin2(k∆z/2)]2 − 4ϑ2

(1 + ϑ)2 + b2 sin2(k∆z/2)
, (95)

ie the attenuation for the implicit method is generally
lower than for the explicit method. The phase term
phase(ξ) = ω∆t is

ω∆t = arccos
B − ϑ2

√

[(1 + ϑ2) + b2 sin2(k∆z/2)]2 − 4ϑ2

(96)
thus leading to the lower phase velocity of the implicit
algorithm as compared to the explicit one. One easily
observes that for b2 ≪ (1 + ϑ2) both (95) and (96)
converge to the expressions for the explicit method (87)
and (90).

8 REFLECTION–FREE BOUNDARIES

OF THE COMPUTATIONAL WINDOW

The simplest boundary conditions are the Dirichlet’s
zero-value, or the Neumann’s zero-derivative condition.
For the voltage on the transmission line they represent
either the short-circuited, or the open-circuited ends of
the line with the voltage-reflection-coefficient equal either
to minus one or to plus one.

To achieve nearly-zero reflections of the wave on the
computational window boundaries and thus to mimic an
infinitely long line (i.e. an infinitely large computational
window) the wave must be either sufficiently attenuated
when impinging on the boundaries of the computational
window, or the boundary condition must be formulated
in such a way as to allow the wave to virtually disappear
from the computational window through its boundaries.

In the first case an absorbing layer must be placed
near the boundaries in combination with the Dirichlet or
Neumann’s boundary condition. In the second the trans-
parent boundary conditions have to be constructed that
allow the impinging wave to out-propagate through the
boundary away from the computational window without
being reflected back.

The absorbing boundary condition consists in the
modification of the line parameters within certain part of
the line near the termination point including loss terms
in order to attenuate penetrating wave.

The transparent boundaries [13] are based on the for-
mal factorization of the wave equation (15) into two one-
way wave equations, ie on the formal operator product

[1

c

∂

∂t
− ∂

∂z

][1

c

∂

∂t
+

∂

∂z

]

f(z, t) = 0 . (97)

The outgoing wave on the “left” boundary is of the
type exp{j(ωt+ kz)} while on the “right” boundary the
outgoing wave of the type exp{j(ωt − kz)} . They sepa-
rately fulfil the equation

[1

c

∂

∂t
− ∂

∂z

]

f(z, t) = 0 , (98)

on the “left” boundary, or the equation

[1

c

∂

∂t
+

∂

∂z

]

f(z, t) = 0 (99)

on the “right” boundary, giving thus zero value to (97).

The transparent condition on the eg ”right” boundary
can be implemented by either of the following formulas

f |n+1
M − f |nM

c∆t
+

f |nM − f |nM−1

∆z
= 0 , (100)

f |n+1
M − f |nM

c∆t
+

f |n+1
M−1 − f |nM−1

c∆t
+

f |nM − f |nM−1

∆z
+

f |n+1
M − f |n+1

M−1

∆z
= 0 . (101)
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The first is the simple discrete explicit form of (99) using
forward differences in time and backward differences in
space, the second is the centered formula

f |n+1
M−1/2 − f |nM−1/2

c∆t
+

f |n+1/2
M − f |n+1/2

M−1

∆z
= 0 (102)

with approximated values f |···M−1/2 by
(

f |···M−1 + f |···M
)

/2

and f |n+1/2
··· by

(

f |n+1
··· + f |n···

)/

2.

In the case of the explicit algorithm (42) the boundary

value f |n+1
M in the “actual” n + 1 time layer can be

determined directly from the known values in the previous
time layer f |n··· and eventually already calculated values

f |n+1
··· in the “actual” time layer, ie for both (100) and

(101) respectively we have

f |n+1
M = (1− b)f |nM + bf |nM−1 , (103)

f |n+1
M = f |nM−1 +

1− b

1 + b

(

f |nM − f |n+1
M−1

)

, (104)

where b = c∆t/∆z . Note that if b = 1 then both formulas
are identical.

For the numerical implementation of implicit-type ei-

ther (103), or (104) must be substituted for f |n+1
M in the

RHS of the last equation in (49). Hence, the last equation
in (49) will be for eg (104) modified to

f |n+1
M−2 − [η + (1− b)/(1 + b)]f |n+1

M−1 =

A|nM−1 − f |nM−1 − (1− b)f |nM
/

(1 + b) . (105)

After having solved (49) the boundary value in the “next”

layer, f |n+1
M , will be a-posteriori determined from (104).

Unfortunately, the simple formula (103) is not power
conserving, since substituting (54) into (103) (the von
Neumann’s analysis) leads to

ξ = 1 + j2b exp(jk∆z/2) sin(k∆z/2) (106)

with |ξ| > 1. For (104) one obtains

ξ =
cos(k∆z/2) + jb sin(k∆z/2)

cos(k∆z/2)− jb sin(k∆z/2)
(107)

ie |ξ| = 1 and thus (104) represents an absolutely power
conserving algorithm.

The quality of the transparent boundary can be

judged by substituting f(z, t) ≈ exp(jωt)
{

exp(−jkz) +

ρ exp(jkz)
}

into (104) and solving for the reflection co-
efficient ρ . It yields

ρ = exp(jk∆z)×
b cos

(

1
2ω∆t

)

sin
(

1
2k∆z

)

− sin
(

1
2ω∆t

)

cos
(

1
2k∆z

)

b cos
(

1
2ω∆t

)

sin
(

1
2k∆z

)

+sin
(

1
2ω∆t

)

cos
(

1
2k∆z

) (108)

with |ρ| 6 1. For b = 1 the ideal case is achieved, there
is no reflection on the boundary and |ρ| = 0. When
b 6= 1, and k∆z = π ie for the maximum representable
wavenumber in accordance with the sampling theorem,
the case ρ = −1 occurs, ie the wave is fully reflected
with the opposite phase. The illustrative demonstration
of the comparison between the zero boundary conditions
and the transparent boundaries is in Fig. 7.

9 CONCLUSIONS

In this first part of the short tutorial the selected
aspects of computer simulation of electromagnetic wave
phenomena in one-dimension have been thoroughly dis-
cussed. It serves the purpose as an introduction to the
complex envelope FDTD formulation and to the more
complicated case of electromagnetic wave propagation in
two and three spatial dimensions.
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