
Journal of ELECTRICAL ENGINEERING, VOL. 64, NO. 2, 2013, 100–105

USER–PARAMETER–FREE ROBUST ADAPTIVE
BEAMFORMING ALGORITHM FOR VECTOR–SENSOR

ARRAYS WITHIN THE HYPERCOMPLEX FRAMEWORK

Xiaoming Gou — Zhiwen Liu — Jingyan Ma — Yougen Xu
∗

The major flaw of the conventional diagonal loading (DL) method is that it is unclear to choose appropriate DL levels
or user-parameters (UPs), though several remarkable contributions have been made to regularize model errors without
UPs. An UP-free algorithm for two-component vector-sensor arrays, which is robust to steering vector errors, is considered.
The algorithm is within the hypercomplex framework using quaternions, and the optimal solution is found at the maximal
correlation between the quaternionic and complex outputs. The performance of the proposed beamformer is illustrated via
numerical simulations and is compared with several other UP-free adaptive beamformers.
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1 INTRODUCTION

Under idealistic assumptions (ie, the precise knowl-

edge of the covariance matrix and the steering vector),
the standard Capon beamformer (SCB) [1] is statistically

equivalent to the optimal beamformer which maximizes
the output signal-to-interference-plus-noise ratio (SINR)

[2]. However, these assumptions often fail due to reasons
such as the limited data length and inaccurate knowl-

edge of the look direction or the array manifold. These
factors would lead to degeneration in the performance of

SCB and the signal-of-interest (SOI) might be nulled if

the factors become important [3–5].

The diagonal loading (DL) method is the most widely

used technique to regularize the errors [6]. Traditional
DL methods, such as the norm constrained Capon beam-

former (NCCB) [6] and the loaded sample matrix inver-
sion (LSMI) [7], determine the DL level in improvised and

unclear ways. Then some steering-vector-uncertainty-set-
based approaches have been proposed which can provide

precise DL level computation [5, 8–11]. However, the re-
sults are related to the size of the uncertainty set which

might be difficult to choose in practical scenarios [12].

Those algorithms mentioned above need user-parameters
(UPs) while there are only a few UP-free approaches in

the literature.

A class of UP-free algorithms named ridge regression

Capon beamformers (RRCBs) [13], which are based on
the generalized sidelobe canceler (GSC) parameteriza-

tions, have attracted increasing attention, though other
techniques such as shrinkage and power matching are also

studied. Typical UP-free methods include the Hoerl Ken-
nard Baldwin method (HKB) [14, 15], the mid-way (MW)

method [16], and general linear combination (GLC) [12].

These methods are generally designed to achieve better

estimates or reduce the singularity of the covariance ma-

trix, and are able to deal with difficult conditions when

the data length is quite limited.

We try to rectify model errors in a high-dimensional

algebra framework, namely quaternions [17], compared

with the two-dimensional space of complex numbers. Mo-

tivated by the quaternion MUSIC (Q-MUSIC) direction-

finding algorithm [18], we consider the beamforming for

two-component vector-sensor arrays using quaternions.

A vector-sensor comprises two or more collocated differ-

ent types of scalar-sensors and is generally advantageous

over a scalar-sensor, eg, for an electromagnetic vector-

sensor, it can additionally exploit the polarization differ-

ence among the received signals [19]. Traditionally the

output of a vector-sensor array is preprocessed to be a

long-vector [19–27], while several recent approaches uti-

lize hypercomplex (eg, quaternion [18], bicomplex [28],

biquaternion [29, 30], quad-quaternion [31], Euclidean 3-

space [32]) or tensorial (eg, fourth-order interspectral ten-

sor [33]) models. The use of hypercomplex algebra pro-

vides a compact way of handling of the recorded data,

and demonstrates its unique characteristics in reduced

memory consumption and improved robustness to model

errors [18].

We have proposed a standard quaternion Capon (Q-

Capon) for two-component vector-sensor arrays in [34].

Even though the hypercomplex-algebra-based algorithms

are proved to be less sensitive to various type of errors,

the Q-Capon beamformer is far from the concept of ro-

bust adaptive beamforming. Motivated by the spectral

self-coherence restoral (SCORE) algorithm which is de-

signed for blind extraction of cyclostationary signals [35],

we present a UP-free DL approach, based on the max-

imal correlation between the quaternion output and its

complex part.
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The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the quaternion algebra and the Q-
Capon beamformer. Then we formulate the proposed ro-
bust approach in Section 3 and provide some numerical

examples compared with several UP-free algorithms in
Section 4. Finally, we give the conclusion in Section 5.

2 QUATERNION CAPON BEAMFORMER

2.1 Quaternions

Hamilton’s quaternions form a four-dimensional (4D)

space. In this paper, we denote the sets of real numbers,
complex numbers with imaginary unit of i , and quater-
nions, as R , C , and H , respectively. A quaternion q ∈ H

comprises one real and three imaginary parts, namely

q = qr + iqi + jqj + kqk (1)

where qr, qi, qj , qk ∈ R and the imaginary units i , j , and

k are subject to the following constraints

i2 = j2 = k2 = −1 ,

ij = −ji = k, jk = −kj = i, ki = −ik = j .
(2)

Various details about quaternions can be found in articles
and books like [18], [36], [37], and part of them that will
be used in this paper are shown below:

(1) The Cayley-Dickson form of q is given by q = qc+jqe ,

where qc = qr + iqi and qe = qj − iqk .

(2) The quaternion algebra is not multiplicatively com-

mutative, ie, generally, for two quaternions a, b ∈ H ,
ab 6= ba .

(3) The conjugate of q , denoted by q⋄ , is defined as

q⋄ = qr − iqi − jqj − kqk . If q⋄ = q , then qr = 0, and
q is a pure quaternion. For two quaternions a, b ∈ H ,
there holds (ab)⋄ = b⋄a⋄ . The conjugate transpose of

a quaternion matrix Q ∈ HN×M , denoted by Q† , is
defined as Q† = QrT − iQiT − jQjT − kQkT , where
superscript T signifies transpose. For two quaternion
matrices A ∈ HN×M ,B ∈ HM×K , there holds (AB)† =

B†A† .

(4) The modulus of a quaternion q ∈ H and the norm of

a quaternion vector q ∈ HN×1 are respectively given

by |q| = √
q⋄q and ||q|| =

√

q†q .

(5) A quaternion matrix Q is Hermitian if Q† = Q .
The eigenvalue decomposition of a Hermitian quater-
nion matrix Q ∈ HN×N is given by Q = UΛU† , where
Λ ∈ RN×N is a diagonal matrix containing the eigen-
values and U ∈ HN×N is comprised of the eigenvectors.

(6) A quaternion matrix Q is invertible if there exists a

matrix over H , denoted by Q−1 , such that QQ−1 =
Q−1Q = I , where I signifies an identity matrix.

2.2 Quaternion Capon beamformer

We assume an array composed of N two-component
vector-sensors. One far-field narrowband SOI s0(t) ∈ C

impinges on the array in the presence of M co-channel
independent interferences {sm(t)}Mm=1

∈ C and back-

ground white Gaussian noise n1(t),n2(t) ∈ CN×1 . The

two measurement vectors x1(t),x2(t) ∈ CN×1 of the two
subarrays are respectively given by

x1(t) =

M
∑

m=0

am,1sm(t) + n1(t) ,

x2(t) =
M
∑

m=0

am,2sm(t) + n2(t) .

(3)

A quaternion-valued output vector q(t) ∈ HN×1 is con-
structed as

q(t) = x1(t) + jx2(t) =

M
∑

m=0

amsm(t) + n(t) (4)

am = am,1 + jam,2 ∈ H
N×1, m = 0, 1, . . . ,M ,

n(t) = n1(t) + jn2(t) ∈ H
N×1 .

(5)

Then the quaternion Capon weight vector w ∈ HN×1 is
given by (see [34] for details)

w =
R−1

a0

a
†
0
R−1a0

(6)

R = E{q(t)q†(t)} ∈ H
N×N (7)

is the Hermitian covariance matrix and the quaternion-
valued output y(t) ∈ H of the beamformer is given by

y(t) = w
†
a0s0(t) +

M
∑

m=1

w
†
aMsM (t) +w

†
n(t) (8)

where w
†
a0 = 1 and w

†
am ≈ 0,m = 1, . . . ,M which

indicates that the interferences are nulled and the SOI is
extracted [34]. In idealistic scenarios, s0(t) only exists in
yc(t) ∈ C from (8). In the presence of model errors, s0(t)
exists in both yc(t) and ye(t), while their mutual phase
delay is hard to be accurately estimated. Hence we use
yc(t) as the output.

3 USER–PARAMETER–FREE ROBUST

QUATERNION CAPON BEAMFORMER

In practical scenarios, the presumed steering vector
ā0 can deviate from the actual one due to reasons like
look direction error and poor covariance matrix estima-
tion (which can be also equivalently viewed as a type of
steering error), leading to undesired conditions such as
self-nulling (ie, the SOI is nulled) and sequentially great
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#1 #2 #4#3Element

Fig. 1. The subarray configuration: stacked square and diamond –
vector-sensor with collocated components, square – type-A sensor,
filled – subarray #1, diamond – type-B sensor, unfilled – subarray

#2

degeneration in the beamforming performance. We con-
sider the diagonal loading technique to compensate the
steering error (where µ denotes the loading level),

R̃ = R̃(µ) = R+ µI ,

w = w(µ) =
R̃−1(µ)ā0

ā
†
0
R̃−1(µ)ā0

.
(9)

In the presence of considerable steering vector errors, we
consider the following progress:

(1) For a relatively small µ , the beamformer is directed to
noise due to the steering vector errors and all the signals
are nulled, and y(t) is almost a mixture of element
noise, ie,

y(t, µ) ≈ w
†(µ)n(t) ,

z(t, µ) = yc(t, µ) ≈ [w†(µ)n(t)]c .
(10)

Then the cross-correlation coefficient between y(t, µ)
and z(t, µ) is given by (the derivation can be found in
Appendix A)

ρyz(µ) =

∣

∣Et{y(t, µ)z⋄(t, µ)}
∣

∣

√

Et{|y(t, µ)|2}
√

Et{|z(t, µ)|2}
≈ 1√

2
. (11)

(2) As µ increases, the self-nulling problem is alleviated.
When µ rises to a very good value, the beamformer
is approximately redirected to the actual direction and
the SOI is perfectly extracted, namely

w(µ) ≈ R−1
a0τ ,

y(t, µ) ≈ τ⋄a†
0
R−1

a0s0(t) = ιs0(t) ,

z(t, µ) = yc(t, µ) ≈ ιcs0(t) ,

(12)

where τ, ι ∈ H . Then ρyz(µ) is given by

ρyz(µ) =

∣

∣Et{y(t, µ)z⋄(t, µ)}
∣

∣

√

Et{|y(t, µ)|2}
√

Et{|z(t, µ)|2}
≈ 1 . (13)

(3) As µ goes on to increase, the leakage problems (ie, the
interferences remain in the output of the beamformer)
emerge and deteriorate, which drags the ρyz down.

Hence we can form an optimization problem to find a
desired µ which is given by

µ̂ = argmax
µ

ρyz(µ) . (14)

It should be noted that when µ approaches infinity,

the beamformer is approximately equal to the classic
delay-and-sum beamformer (DAS, also named Bartlett

beamformer), namely w ≈ ā0 , in which case the most

serious leakage problem happens. The gain of the DAS
at the m-th signal is the projection of the vector am

onto the vector ā0 . If the two subarrays are catego-
rized conventionally by the types of the sensors (eg, for

a crossed-dipole array, sensors measuring Ex and Ey in-

cident electric fields belong to subarray #1 and subar-
ray #2, respectively), their steering vectors of the same

signal are colinear, namely am,1//am,2 , which leads to
am//am,1//am,2 . Hence y(t, µ) and z(t, µ) can be highly
correlated, which indicates a large ρyz . To avoid this

undesired situation, we divide the array into two ar-
rays in a ping-pong manner, which can guarantee the

non-colinearity without ambiguity since no inter-element

spacings have changed, as is shown in Fig. 1.

It is easily verified that z(t, µ) can be rewritten as

z(t, µ) = yc(t, µ) =
y(t, µ)− iy(t, µ)i

2
. (15)

Thus we can reformulate (14) as

µ̂ = argmax
µ

ρyd(µ), d(t, µ) = iy(t, µ)i (16)

Since

Et

{

|d(t, µ)|2
}

= Et

{

|y(t, µ)|2
}

= w
†(µ)Rw(µ) ,

Et

{

y(t, µ)d⋄(t, µ)
}

= w
†(µ)Cw(µ)i

(17)

where

C = E{q(t)iq†(t)} ∈ H
N×N ,C† = −C . (18)

Then ρyd(µ) is given by

ρyd(µ) =

∣

∣

∣
Et

{

y(t, µ)d⋄(t, µ)}
∣

∣

∣

√

Et

{

|y(t, µ)|2} ·
√

Et

{

|d(t, µ)|2}

=

∣

∣

∣
w

†(µ)Cw(µ)
∣

∣

∣

w†(µ)Rw(µ)
. (19)

Since there are no clear guidelines to choose the upper

limit of µ , here we use an alternate formulation called

convex combination (CC) [38, 39], namely,

R̃ = R̃(α) = (1− α)R + αI , 0 ≤ α ≤ 1 ,

w = w(α) =
R̃−1(α)ā0

ā
†
0
R̃−1(α)ā0

(20)
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Construct q (t)

Calculate R and C

Calculate r yd (a) to find â

Construct a0

Output y
c

(t)

Calculate y (t)

Calculate w

Input of a0,1 and a0,2

Input of x1 (t) and x2 (t)

Fig. 2. Flowchart of RQ-Capon beamformer
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Fig. 3. Normalized beampatterns

which compresses the infinite interval µ ∈ [0,∞) into the
finite interval α ∈ [0, 1] nonlinearly. Then we can rewrite
(16) as

α̂ = arg max
0≤α≤1

ρyd(α) (21)

where

ρyd(α) =

∣

∣w
†(α)Cw(α)

∣

∣

w†(α)Rw(α)

=

∣

∣ā
†
0
[(1− α)R+ αI)]−1C[(1− α)R + αI]−1

ā0

∣

∣

ā
†
0
[(1 − α)R+ αI)]−1R[(1− α)R + αI)]−1ā0

. (22)

We name the beamformer formulated above as robust
quaternion Capon beamformer (RQ-Capon), which is an
user-parameter-free algorithm. The flowchart of the RQ-
Capon beamformer is illustrated in Fig. 2, and the two
performance evaluation criterions, namely SINR (signal-
to-interference-plus-noise ratio) and SOI power estimate
are respectively given by

SINR =
σ2

0
|(w†

a0)
c|2

σ2
n||w ||2 +

∑M

m=1
σ2
m|(w†am)c|2

, (23)

σ̂2

0 = E{|[w†
q(t)]c|2} =

(wc)†R11w
c + 2[(wc)†R12w

e]r + (we)†R22w
e (24)

where σ2

n
denotes the noise power (see remaining power

computation in (27)) and

R11 = E{x1(t)x
†
1
(t)} ,

R22 = E{x2(t)x
†
2
(t)} ,

R12 = E{x1(t)x
†
2
(t)} ,

w =
[(1− α̂)R + α̂I]−1

ā0

ā
†
0
[(1− α̂)R+ α̂I]−1ā0

.

(25)

4 SIMULATIONS

In this section, we provide some numerical examples

to illustrate the performance of the proposed beamformer

comparing it with several UP-free robust beamformers,

i.e., GLC, HKB, and MW. The non-robust version of RQ-

Capon, namely Q-Capon is also shown for comparison. In

all the examples, we assume a uniform linear array (ULA)

composed of 8 crossed-dipole antennas (measuring Ex

and Ey incident electric fields) spaced half wavelength

apart. The incident signals are assumed to be far-field

narrowband, and the noises of 0 dB power are complex-

valued zero-mean additive white Gaussian. One SOI of

15 dB power from 40◦ (azimuth) and two interfering sig-

nals both of 30 dB power from 80◦ and −15◦ (azimuth)

impinge on the array, respectively.

In the first example, we set the number of snapshots

to 200. For the convenience of beampattern visualiza-

tion, we assume the three signals shares the same ele-

vation and polarization angles as 45◦ and (45◦, 0◦), re-

spectively. Fig. 3 shows the normalized beampattern (ac-

quired by plotting 10log10{|[w†
a(θ)]c|2}) of RQ-Capon

and Q-Capon when the presumed SOI angle is 44◦ (i.e.,

a 4◦ error), where the three vertical lines indicate the an-

gles of three sources. It can be seen that RQ-Capon has

a robust response at the SOI when look direction error

exists, while Q-Capon suffers a self-nulling problem.

The results below are all averaged via 1000 Monte-

Carlo simulation runs.

In the second example, we test robustness of the beam-

formers in terms of output SINR and SOI power esti-

mation. The elevation angles of the SOI and two inter-

ferences are 25◦, 65◦, 45◦ , respectively, while their polar-

ization angles are (45◦, 0◦), (10◦, 85◦), (75◦, 30◦), respec-

tively. The presumed SOI angles are (42◦, 27◦, 43◦, 2◦),

which means a 3◦ error in every parameter. Fig. 4 and

Fig. 5 illustrate the output SINR and SOI power esti-

mates versus number of snapshots, respectively. The op-

timal (or maximally achievable) SINR and the real SOI

power are also shown for comparison. It can be seen that

higher SINR values and more accurate SOI power esti-

mates are achieved by RQ-Capon. The improvements are
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mainly due to RQ-Capon’s additional exploitation of the
subarray feature within the hypercomplex modelling.

5 CONCLUSIONS

We have proposed a cross-SCORE-based robust adap-
tive beamformer (named RQ-Capon) in the hypercom-
plex framework for sensor arrays of two-component vec-
tor sensors, which selects the diagonal loading levels via
a finite-interval searching scheme without specifying any
user-parameter. We have demonstrated via numerical ex-
amples that RQ-Capon is superior compared with several
other user-parameter-free approaches in terms of both
SINR and SOI power estimation. To conclude the pa-
per, we note that RQ-Capon can also be performed on
any scalar-sensor array with two equal-dimensional non-
overlapping rotational-variant subarrays.

APPENDIX: A Computation in (11)

For simplicity, µ is omitted, then

E{|y(t)|2} ≈ w
†E{[n1(t) + jn2(t)][n

†
1
(t)− n

†
2
(t)j]}w

= 2σ2

n
‖w‖2, (26)

E{|z(t)|2} ≈ E{|(wc)†n1(t) + (we)†n2(t)|2}
= σ2

n(||wc||2 + ||we||2) = σ2

n||w ||2, (27)

|E{y(t)z⋄(t)}| ≈ |w†[n1(t) + jn2(t)][n
†
1
(t)wc + n

†
2
(t)we]|

= σ2

n|w†
w

c +w
†jwe| = σ2

n||w ||2. (28)

Hence

ρyz ≈ σ2

n
||w ||2

√

2σ2
n
||w ||2 ·

√

σ2
n
||w ||2

=
1√
2
. (29)
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