
Journal of ELECTRICAL ENGINEERING, VOL. 63, NO. 6, 2012, 380–385

APPLICATION OF INDEPENDENT COMPONENT
ANALYSIS FOR SPEECH–MUSIC SEPARATION USING

AN EFFICIENT SCORE FUNCTION ESTIMATION

Arash Pishravian — Masoud Reza Aghabozorgi Sahaf
∗

In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on
the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that,
score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and
the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the
algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density
estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to
the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better
performance and less processing time.
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1 INTRODUCTION

Usually existing audio signals are combinations of sev-
eral audio source signals which are mixed at the same
time. By progress in the speech and signal processing
techniques, the vital need to audio separation is so much
sensible. The most important audio sources are the speech
and music, thus separating them is included in many ap-
plications, such as automatic speech recognition, speech
enhancement, music information retrieval and electronic
music composition. For attaining to speech-music dis-
criminating various techniques have been used by now
[1–4], but in these techniques usually many special as-
sumptions have been considered on signals or combina-
tion. Recently after introducing blind source separation
techniques, it is obvious that they can be used for this
problem.

Blind source separation is a basic and challenging re-
search problem in signal processing which has been firstly
introduced by Herault and Jutten [5] and has received a
great deal of attention in recent years, with a broad range
of applications. BSS consists of recovering source signals
from several observed mixtures of them. The observa-
tions are obtained from a set of sensors, each receiving
a different combination of source signals. The problem is
called “blind” because no information is available about
the mixture. Thus far, the problem of the BSS has been
solved using various techniques and algorithms. The lack
of prior information must be compensated by considering
some special assumptions. The most popular condition
used in BSS techniques is the statistical independence of
source signals. The goal in these techniques is to achieve a
separation process that produces most independent out-

puts, so is called independent component analysis (ICA)
[6, 7]. Various criterions of independence cause various al-
gorithms in the ICA method [8–10]. The criteria that is
used in this paper to measure the independence is the
outputs’ mutual information, which is demonstrated in
[7] that source separation based on minimization of the
mutual information is asymptotically a Maximum Likeli-
hood (ML) estimation of the sources.

The paper is organized as follows: In Section 2 the
problem formulation is presented. Section 3 expresses the
score function estimation. The separation algorithm is
explained in Section 4. In Sections 5 the experimental
results are presented, and concluding remarks are given
in Section 6.

2 PROBLEM FORMULATION

In this section a model for the problem and some
notions of blind identification are presented.

2.1 The Model

Assume that d signals S(t) =
(

s1(t), . . . , sN (t)
)⊤

are
transmitted from d sources. Considering a narrowband
time-invariant channel, what we receive at N sensors
will be the instantaneous linear combinations of these
signals that construct measured data, ie N sensor signals

X(t) =
(

x1(t), . . . , xN (t)
)⊤

X(t) = a1s1(t) + · · ·+ adsd(t) . (1)

Thus the model is

X(t) = A · S(t) (2)
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where x(t) ∈ ℜm×1 is the measured data vector, s(t) ∈

ℜd×1 is the signal vector, A = [a1, . . . , ad] ∈ ℜ
m×d char-

acterizes the unknown channel and is referred to as the
“mixing matrix”.

Above model is instantaneous BSS model. The aim of
separating algorithm is to construct a separating matrix
B such that the components of the vector Y(t) = BX(t)
contain an estimate of original signals, up to a few inde-
terminacies (scale and permutation). If we suppose that
N mixed signals are linear combination of unknown mu-
tually statistically independent source signals, as men-
tioned above the problem is called independent compo-
nent analysis (ICA). In this case, the goal is to achieve a
separation process that produces most independent out-
puts, in other word the independence of the outputs in-
sures the separation of the sources.

It is obvious that our problem can be coincided with
above mentioned model. Considering speech and music
as two original sources that have been combined in an
unknown channel, and their combination (at least by two
receivers) have been recorded, we can use a 2x2BSS(ICA)
model for problem.

2.2 Independence Identification

As mentioned in ICA, separation process is achieved
by obtaining outputs that are independent as most as pos-
sible. So in ICA we need a technique that measures the
independence. By now various techniques for measuring
independence and corresponding various ICA algorithms
have been introduced such as JH alg. [5], Cumulant
based, HOS (Higher Order Statistics), FOBI (Fourth Or-
der Blind Identification) and using IM(Information Max-
imization) and ML (Maximum Likelihood), MI (Mutual
Information) score functions [8–13].

In this paper for measuring the independence the mu-
tual information can be used as below

I(X) =

∫

X

PX(X) Ln
PX(X)

∏

i Pxi
(xi)

dX =

∑

i

H(xi)−H(x) (3)

where px and pxi
are the PDFs of X and xi respec-

tively and H denotes the Shannon’s entropy. According
to above equation, we conclude that the mutual infor-
mation is always non-negative and it is zero if and only

if PX(X) =
∏N

i=1 pxi
, i.e. when x1, . . . , xN are indepen-

dent. In fact, for separating the sources, we must minimize
the mutual information of the outputs.

3 SCORE FUNCTION ESTIMATION

Because the estimation of the score function has an im-
portant role in separating algorithm, in this section score
function and two methods for it’s estimation introduced.

3.1 Score Function

Score function of a random variable x is introduced as
[14]

ψx(x) = −
d

dx
ln px(x) = −

p′x(x)

px(x)
(4)

where px is pdf of x .

For a random vector X = (x1, . . . , xN )⊤ two score
functions are introduced:
– MSF (Marginal Score Function)

ψX(X) =
(

ψ1(x1), ψ2(x2), . . . , ψN (xN )
)⊤

(5)

where ψi(xi) is score function of i -th component.
– JSF (Joint Score Function)

ϕX(X) =
(

ϕ1(X), ϕ2(X), . . . , ϕN (X)
)⊤

(6)

where

ϕi(x) = −
∂

∂xi
ln pX(X) = −

∂
∂xi

pX(X)

pX(X)
. (7)

The difference between marginal score function and
joint score function is called Score Function Difference
(SFD)

βX(X) = ψX(X)− ϕX(X) . (8)

This function contains some information about indepen-
dence of vector components. Score functions have some
properties that are used in next section such as:

(a) Components of vector X = (x1, . . . , xN )⊤ are inde-
pendent if and only if βX(X) = 0, ie ψX(X) = ϕX(X).

(b) If X is a bounded vector then E
{

ϕX(X)X⊤
}

= I .

As it will be mentioned in the next section, the al-
gorithm at each iteration needs to estimation of score
function hence the speed and accuracy of the estimation
will affect on the quality of the separated signals and the
processing time of algorithm.

The utilized method of our algorithm for score func-
tion estimation is based on the Gaussian mixture (GM)
model which is introduced in the next section. To show
the proper performance of the presented estimation, the
results are compared with Minimum Mean Square Error
(MMSE) method which is a usual approach in score func-
tion estimation. In addition this method is explained in
Section 3.3.

3.2 Gaussian Mixture Estimator

A general class of density models is the Gaussian mix-
ture model. This method models the unknown density
with a sum of Gaussian kernels as in the following form
[15]

f(y) =

m
∑

k=1

πkg
(

y, µk, σ
2
k

)

(9)
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where g(·) is the Gaussian kernel with center mean µk

and variance σ2
k .

g
(

y, µk, σ
2
k

)

=
1

√

2πσ2
k

exp
(y − µk)

2

2σ2
k

. (10)

Under the Gaussian mixture model, the score function of
y reads

ψ(y) =

∑m
k=1 ψkg(y, µk, σ

2
k)

y−µk

σ2

k

f(y)

=

m
∑

k=1

P (k|y)
y − µk

σ2
k

(11)

for any y it holds
∑m

k=1 P (k|y) = 1.

For our estimation model we use m = 400, with their
centers equidistantly positioned over the range of y and
with constant variance σ2 . If µ1 ≤ min(y) is the center
of the first kernel then the center of the k - th kernel is
µk = µ1 + (k − 1)δ and δ = (µm − µ1)/(m − 1) is the
distance between centers. In this case the score function
becomes

ψ(y) =
1

σ2

[

y −
m
∑

k=1

P (k|y)µk

]

. (12)

Our choice for variance is σ = n−2/7std(y) where
std(y) is the standard deviation of each random vari-
able y . To estimate the score function in (12) on all
points yi , we need to compute for all points the quan-
tity

∑m
k=1 P (k|y)µk = h(y)/f(y), where

h(y) =

m
∑

k=1

πkµk exp
[

−0.5(y − µk)
2
/

σ2
]

,

f(y) =

m
∑

k=1

πk exp
[

−0.5(y − µk)
2
/

σ2
]

.

(13)

However, instead of computing directly by substituting
the yi in the above formulas, we can evaluate both h(y)
and f(y) only at the points µk and then interpolate for
computing the values of the functions at the points yi .
Using the µk from above, the values of h(y) and f(y)
become

h(µl) =
m
∑

k=1

πkµk exp
[

−0.5(l− k)2δ2
/

σ2
]

,

f(µl) =
m
∑

k=1

πk exp
[

−0.5(l− k)2δ2
/

σ2
]

.

(14)

Both quantities are in the form bl =
∑m

k=1 akgl−k

which is a discrete convolution and can be efficiently car-
ried out with the FFT algorithm very quickly. Moreover,
the mixing weights πk can be approximated by the his-
togram of y [5].

3.3 MMSE Estimator

Let x be a random variable with the PDF Px(x)
and f(x) be a continuously differentiable function and
lim

x→±∞
f(x)px(x) = 0, then [16]

E{f(x)ψ(x)} = E
{∂f

∂x
(x)

}

. (15)

The above equation shows that one can easily design
a MMSE estimator for the ψ(x) using the parametric

function f(x;W ) where W = (w1, . . . , wk)
⊤ denotes the

parameter vector

argmin
W

E
{(

ψk(x)− f(x;W )
)2}

=

argmin
W

{

E{f2(x;w)} − 2E
{∂f

∂x
(x;W )

}}

. (16)

For instance, we would like to estimate the ψ(x) as a
linear combination of ki(x), which is

ψ̂(x) =

L
∑

i=1

wiki(x) = K⊤(x)W (17)

where W = (w1, . . . , wL)
⊤ , K(x) =

(

k1(x), . . . , kL(x)
)⊤

.

The coefficient W must be determined such that the
error term E

{

[ψ(x) − ψ̂(x)]2
}

[is minimized. From the

orthogonality principle and equation (15) we can write

E
{

K(x)K⊤(x)
}

W = E{K ′(x)} . (18)

In our separating algorithm, for score function estima-
tion we have applied the following kernels

K1(x) = 1 , k2(x) = x , k3(x) = x2, k4(x) = x3. (19)

4 SEPARATING ALGORITHM

In the separating algorithm, the MI of the outputs
I(Y ) has been chosen as the independence criterion. Fur-
thermore the natural gradient approach is used to min-
imize the MI, ie, in order to mutual information min-
imization, we need to estimate the gradient of mutual
information with respect to the parameters of the sepa-
rating system, in other word derivative of MI with respect
to the separating matrix is needed, which is calculated
as [13]

∂

∂B
I(Y ) = E

{

βY (Y )X⊤
}

(20)

where βY (Y ) is the SFD of the vector Y . This relation
is converted to the following relation in instantaneous
mixtures

∆B(I) =
∂I

∂B
B⊤ = E

{

βY (Y )Y ⊤}
}

. (21)
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> Initialization: B = I and Y = X

> Loop:

a) Estimate YY (Y) (MSF)

b) DB I = E{ YY (Y) YT }-I

c) B (I - mDB I ) B

d) Y = BX

e) Normatialization:

* yi = yi/ s i , where s2
i is the energy yi

* Divide the i - th row of the matrix B by si

Fig. 1. The iteration procedure of the separating algorithm
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Fig. 2. The iteration procedure of the separating algorithm
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Fig. 3. (a),(b) – original speech and music signals, (c),(d) – mixed
signals

Considering the definition of SFD and it’s property men-

tioned in Section 3.1 we can rewrite (21) as

∆BI = E
{

ψY (Y )Y ⊤
}

− I (22)

where I denotes the Identity matrix and ψY (Y ) is the
marginal score function of the vector Y , ie

ψy(y) =
(

ψ1(y1), . . . , ψN (yN )
)⊤

(23)

where ψi(yi) = −
d
dyi

Ln pyi
(yi) = −

p′

yi
(yi)

pyi
(yi)

.

The procedure of the separating algorithm would be
the way that in each iteration, the score functions (MSF)
from observation signal samples is estimated at first, and
then the B matrix will be updated as

B ←− (I − µ∆BI)B (24)

where µ is a learning rate. Finally a normalization step
is executed for the convergence of the algorithm. The
mentioned procedure would be repeated as much as the
algorithm is converged and stopped.

The final separating algorithm is summarized in Fig. 1.

5 EXPERIMENTAL RESULTS

To evaluate the algorithm performance, a male speech
signal from FARSDAT data and a music signal have been
used. In all the experiments, we have µ = 0.1.

Also for comparing the two estimators, the separat-
ing algorithm has been exercised as the following two
cases:Case 1) separating algorithm by MMSE estimator,
Case 2) separating algorithm by GM estimator.

In both cases, at first the 3000 samples of the mixing
signals (selected frame) have been used as the input of the
algorithm, then the obtained separating matrix (B ) from
separation algorithm has been applied to whole of mixed
signals (observations) to achieve the original signals, see
Fig. 2.

For measuring the separation quality, we use the out-
put SNR defined by:

SNRi = 10 log
E{y2i }

E{y2i |si=0}
(25)

where yi|si=0 stands for what is at the ith output when
the ith input is zero (assuming there is no permutation).
By using this definition, SNR will be a measure of separa-
tion, and a high SNR means that there is not a large leak-
age from the other sources to the output corresponding to
ith input. To be noted, the total SNR can be calculated
as

SNR =

∑N
i=1(SNRi)

N
. (26)

In Fig. 3(a–d), 6 seconds from the original and mixed
(observations) have been shown. At first, the separating
algorithm using MMSE estimator (case 1) has been exam-
ined. In Fig. 4 output (separated) signals and in Fig. 6a
the output SNR versus the number of the algorithm iter-
ations have been displayed.
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Fig. 4. Separated signals for case 1
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Fig. 5. Separated signals for case 2
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Fig. 6. Output SNR (in Db) versus iteration: (a) – case 1, (b) –
case 2

Error measure (E)

2

1

0

Iteration

25001000 1500 20005000

2

1

0

Iteration

500200 300 4001000

Error measure (E)

(a)

(b)

Fig. 7. The error measure versus the number of iterations: (a) –
MMSE estimator, (b) – GM estimator

Next, we applied the separating algorithm using GM
estimator (case 2) to the above-mentioned signals which
results have been displayed in Figs. 5 and 6b.

Also the algorithm performance is measured by the
following error measure [17]

E =

d
∑

i=1

(

d
∑

j=1

|pij |

maxk |pik|
− 1

)

+

d
∑

j=1

(

d
∑

i=1

|pij |

maxk |pkj |
− 1

)

(27)
where pij are the elements of the matrix P = BA . The
results are presented in Fig. 7.

From the figures it is obvious that the separating al-
gorithm by GM estimator shows a better performance in
speech-music separation which causes more SNR’s, in ad-
dition the separating algorithm by GM estimator is con-
verged faster and eventually the processing time of the
algorithm would be fewer.

The comparing of the processing time of the separat-
ing algorithm in MATLAB shows, the run time for 100
iterations in GM and MMSE method are approximately
1.73 and 1.06 seconds respectively.

6 CONCLUSION

In this paper, the method of GM estimator has been
used to score function estimation in blind source sepa-
ration. The experimental results indicate the separating
algorithm by GM estimator has a better performance in
speech-music separation compare to MMSE estimator in
addition the separating algorithm can be converged faster
and eventually the processing time of algorithm would be
less.
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