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UNIFIED APPROACH TO THE IMPULSE RESPONSE AND
GREEN FUNCTION IN THE CIRCUIT AND FIELD THEORY

PART II : MULTI–DIMENSIONAL CASE

L’ubomı́r Šumichrast
∗

In the circuit theory the concept of the impulse response of a linear system due to its excitation by the Dirac delta
function δ(t) together with the convolution principle is widely used and accepted. The rigorous theory of symbolic functions,
sometimes called distributions, where also the delta function belongs, is rather abstract and requires subtle mathematical
tools [1–4]. Nevertheless, the most people intuitively well understand the delta function as a derivative of the (Heaviside) unit

step function 1(t) without too much mathematical rigor. In the previous part [5] the concept of the impulse response of linear
systems was approached in a unified manner and generalized to the time-space phenomena in one dimension (transmission
lines). Here the phenomena in more dimensions (static and dynamic electromagnetic fields) are treated. It is shown that
many formulas in the field theory, which are often postulated in an inductive way as results of the experiments, and therefore
appear as “deux ex machina” effects, can be mathematically deduced from a few starting equations.

K e y w o r d s: circuit theory, field theory, impulse response, Green function

1 INTRODUCTION

It has been shown in the previous paper [5] that the
use of impulse response of a linear system as a reaction
to the excitation by the Dirac impulse, or δ -function,
is a very fruitful concept of electrical engineering educa-
tion, making possible to calculate easily the response of
the system to any excitation. Mainly in the circuit the-
ory it is wide-spread and often used approach. We have
shown that this approach can be easily and naturally
transposed from time domain problems (circuit theory)
to space domain problems as eg the one-dimensional har-
monic steady state of wave propagation and excitation,
as well as to one-dimensional time-space wave equation
— representing eg the waves on the transmission line.

Here we shall further develop this approach to the
treatment of more dimensional linear systems of electro-
magnetics, particularly the static electric and magnetic
fields as well the dynamic electromagnetic fileds.

2 THE IMPULSE RESPONSE FOR

THE LAPLACE OPERATOR

Let the solution of the Poisson equation

∇2V (r) = −q(r) , (1)

in the infinite space be considered, where the radius vec-
tor of the Cartesian coordinate system is r = xux+yuy+
zuz , ϕ(r) = V (x, y, z), q(r) = q(x, y, z), and the Laplace
operator in Cartesian coordinate system, reads

∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. (2)

The impulse response g(r) for the Laplace operator is
the solution of the equation

∇2g(r) = −δ(r) . (3)

The three dimensional δ -function δ(r) is in the Cartesian
co-ordinate system defined as

δ(r) = δ(x)δ(y)δ(z) . (4)

The impulse response g(r) can be obtained after the
three dimensional Fourier transform (63) of (3)

[

(jkx)
2
+ (jky)

2
+ (jkz)

2
]

G(jk) = −1 . (5)

Since it possesses spherical symmetry one can simply
write (see Appendix I.)

G(jk) = G3(k) = 1/k2

where k2 = k2x + k2y + k2z . Using the one dimensional in-

verse Fourier transform of (5) analogously as the formulae
(12) and (14) in [5] we obtain

1/k2
1D–FT
←→ (−r/2)[1(r) − 1(−r)] , (6)

and the use of (73) yields

g(r) = −
1

2πr

d

dr

(

−
r

2

)

=
1

4πr
, (7)

or written vectorially

g(r) = 1/4π |r| . (8)
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The solution of the Poisson equation of electrostatics

∇2V (r) = −ρ(r)/ε , (9)

where V (r) is the scalar potential of the intensity of
electric field, ρ(r) the volume charge density and ε0 the
permittivity of vacuum, is then in the whole infinite space
merely the convolution

V (R) =

∫∫∫

∞

ρ(r)

4πε0 |R− r|
dv . (10)

Similarly, the Poisson equation for the vector potential
A(r) of a stationary magnetic field

∇2
A(r) = −µ0J(r) , (11)

where J(r) is the density of volume current and µ0 the
permeability of vacuum, possesses the analogous convo-
lutional solution

A(R) =

∫∫∫

∞

µ0J(r)

4π |R− r|
dv , (12)

provided the Coulomb gauge is used for calibration of the
vector potential.

Notice the difference in Laplace operator applied
to the scalar or vector field. While ∇2V (r) has the

menaing ∇2V (r) = div gradV (r), the vectorial expres-

sion ∇2
A(r) means

∇2
A(r) = graddivA(r) − curl curlA(r) .

Herewith we have obtained the alternate expressions
for the three-dimensional delta function δ(R − r) in the
form

δ(R− r) = −∇2

r

1

4π|R− r|
= − divr

R− r

4π|R− r|3
, (13)

or

δ(R − r) = −∇2

R

1

4π|R− r|
= divR

R− r

4π|R− r|3
. (14)

In (13) and (14) R has the same meaning of a radius
vector as r , one needs just to distinguish with respect
to which variable the differential operators are applied
(indexes r , or R).

3 FUNDAMENTAL THEOREM BY HERMANN

HELMHOLTZ FOR VECTOR FIELDS

Let us consider the vector field F(r) and the sifting
property of the δ -function together with (14) over the
infinite space

F(R) =

∫∫∫

∞

F(r)δ(R − r) dv . (15)

Substituting to (15) from (14) gives

F(R) = −

∫∫∫

∞

F(r)∇2

R

1

4π|R− r|
dv . (16)

where ∇2

R is understood as ∇2

R = divR gradR . Since the

Laplace operator operates on the variable R , it can be
taken outside the integral

F(R) = −∇2

R

∫∫∫

∞

F(r)
1

4π|R− r|
dv , (17)

but now it operates on the vectorial expression, therefore
∇2

R must be understood as

∇2

R = gradR divR− curlR curlR . Since

divR

∫∫∫

∞

F(r)

4π|R− r|
dv =

∫∫∫

∞

F(r)·gradR
1

4π|R− r|
dv

= −

∫∫∫

∞

F(r)·gradr
1

4π|R− r|
dv =

∫∫∫

∞

divr F(r)

4π|R− r|
dv

−

∫∫∫

∞

divr
F(r)

4π|R− r|
dv , (18)

and similarly

curlR

∫∫∫

∞

F(r)

4π|R− r|
dv

= −

∫∫∫

∞

F(r)× gradR
1

4π|R− r|
dv

=

∫∫∫

∞

F(r) × gradr
1

4π|R− r|
dv

=

∫∫∫

∞

curlr F(r)

4π|R− r|
dv−

∫∫∫

∞

curlr
F(r)

4π|R− r|
dv , (19)

and taking into account that the last integrals in (18) and

(19) must be in case of infinite domain and continuous
non-singular vector field F(r) equal to zero, we arrive to

the expression

F(R) = − gradR

∫∫∫

∞

divF(r)

4π|R− r|
dv

+ curlR

∫∫∫

∞

curlF(r)

4π|R− r|
dv . (20)

Formula (20) can be written also in the form

F(R) = − gradV (R) + curlA(R) . (21)
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where V (R) and A(R) are the scalar and vector poten-
tial of the vector field F(R).

V (R) =

∫∫∫

∞

divF(r)

4π|R− r|
dv , (22)

A(R) =

∫∫∫

∞

curlF(r)

4π|R− r|
dv . (23)

This is the fundamental theorem saying that each vec-
tor field can have only two constituents, the lamellar, or
sometimes called conservative constituent − gradV (R)
with its origin in the volume density of scalar (spring-
type) sources divF(R), and the solenoidal constituent
curlA(R) originated by the volume density of vectorial
(vortex- type) sources curlF(R).

Explicitly written (20) gives

F(R) =

∫∫∫

∞

divF(r)(R − r)

4π|R− r|
dv

+

∫∫∫

∞

curlF(r)× (R − r)

4π|R− r|
dv , (24)

where one easily recognizes the form of the first term
as the well-known Coulomb law of electrostatics and the
form of the second one as the Biot-Savart law of station-
ary magnetic fields.

Let us divide the whole infinite space into two non-
overlapping simply connected domains Ω1 and Ω2 with a
common boundary — the closed surface Σ. Let us define
the unit-step function 1Ω1(r) over Ω1 , and analogously
1Ω2(r) over Ω2 . Then the relation (79)

grad1Ω1(r) = −n12δΣ(r) ,

grad1Ω2(r) = n12δΣ(r) ,
(25)

where n12 is the normal unit vector of the boundary
surface directed from Ω1 to Ω2 , holds.

Now, the vector field F(r) in the whole infinite space
will be written in the form

F(r) = F1(r)1Ω1(r) + F2(r)1Ω2(r) (26)

denoting thus explicitly the values of F(r) in Ω1 as F1(r)
and in Ω2 as F2(r). This leads to the formula

divF(r) = divF1(r)1Ω1(r) + F1(r) · grad1Ω1(r)

+ divF2(r)1Ω2(r) + F2(r) · grad1Ω2(r) , (27)

or

divF(r) = divF1(r)1Ω1(r) − F1(r) · n12δΣ(r)

+ divF2(r)1Ω2(r) + F2(r) · n12δΣ(r) . (28)

The substitution into (22) yields

V (R) =

∫∫∫

∞

divF1(r)1Ω1(r) + divF2(r)1Ω2(r)

4π|R− r|
dv

+

∫∫∫

∞

[F2(r) − F1(r)] · n12δΣ(r)

4π|R− r|
dv , (29)

or

V (R) =

∫∫∫

∞

divF(r)

4π|R− r|
dv+

+©

∫∫

Σ

n12 · [F2(r)− F1(r)]

4π|R− r|
dS , (30)

and similarly for the vector potential

A(R) =

∫∫∫

∞

curlF(r)

4π|R− r|
dv

+©

∫∫

Σ

n12 × [F2(r) − F1(r)]

4π|R− r|
dS . (31)

The second terms in (30) and (31)— the discontinuities in
the normal and tangential values of the vector field — are
called surface divergence and surface curl and represent
the origins of the field in form of surface densities of the
scalar (spring-type) and vectorial (vortex type) sources.

4 GREEN FORMULAE FOR THE BOUNDED

PROBLEMS OF THE ELECTROSTATICS

AND STATIONARY MAGNETIC FIELDS

Using (79) one can easily obtain the well known Green
formula in the differential form. Let us apply the Laplace
operator to the function V (r)1Ω(r), ie to V (r) having
been cut to zero outside Ω,

∇2{V (r)1Ω(r)} = div grad{V (r)1Ω(r)} =

div
{

1Ω(r) gradV (r) − nV (r)
∣

∣

r∈Σ
δΣ(r)

}

. (32)

Further applying the divergence operator yields

∇2
{

V (r)1Ω(r)
}

=

1Ω(r)∇
2V (r)− n · gradV (r)

∣

∣

r∈Σ
δΣ(r)

− n · V (r)
∣

∣

r∈Σ
grad δΣ(r) . (33)

Substitution from (9) gives the generalized Poisson equa-
tion of electrostatics

∇2
{

V (r)1Ω(r)
}

= −ρ(r)1Ω(r)/ε0

− n · gradV (r)
∣

∣

r∈Σ
δΣ(r)− n · V (r)

∣

∣

r∈Σ
grad δΣ(r) .

(34)
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Its solution is easily obtained by the convolution with the
impulse response of the free infinite space

V (R)1Ω(R) =

∫∫∫

Ω

ρ(r)

4πε0|R− r|
dv+

+©

∫∫

Σ

gradV (r)

4π|R− r|
· dS′

−©

∫∫

Σ

V (r) gradr
1

4π|R− r|
· dS .

(35)

Observe that dividing the whole infinite space into two
parts — the domain Ω and the complement ∞−Ω (10)
may be written as

V (R) =
∫∫∫

Ω

ρinside(r)

4πε0|R− r|
dv +

∫∫∫

∞−Ω

ρoutside(r)

4πε0|R− r|
dv,

(36)

ie to the scalar potential V (r) in any point contribute
the charge densities inside Ω as well as outside Ω.

On the other hand the formula (35) says that the effect
of two surface integrals on the potential inside Ω is the
same as the effect of outside charges. In this sense they
represent outside volume charge densities transformed

into the surface charge density −ε0n · gradV (r)
∣

∣

r∈Σ
and

the surface dipole moment density −ε0nV (r)
∣

∣

r∈Σ
.

Observe also that accordingly (35) the potential out-
side Ω is zero. The two surface terms have the twofold
effect of adding the contribution of the outside charge
densities to the potential inside Ω, as well as compensat-
ing the contribution of inside charge densities to the zero
potential outside Ω.

Similar considerations can be performed also for the
vector potential of the magnetic field. Using the rules of
the ∇ operator algebra one obtains

div{A(r)1Ω(r)} =

= divA(r)1Ω(r)− n ·A(r)
∣

∣

r∈Σ
δΣ(r) (37)

and

graddiv{A(r)} = graddivA(r)1Ω(r)

− n divA(r)
∣

∣

r∈Σ
δΣ(r)− n ·A(r)

∣

∣

r∈Σ
grad δΣ(r) , (38)

together with

curl{A(r)1Ω(r)} =

= curlA(r)1Ω(r) − n×A(r)
∣

∣

r∈Σ
δΣ(r) (39)

and

curl curl{A(r)1Ω(r)} = curl curlA(r)1Ω(r)

− n× curlA(r)
∣

∣

r∈Σ
δΣ(r) + n×A(r)

∣

∣

r∈Σ
× grad δΣ(r) .

(40)

Hence

∇2{A(r)1Ω(r)} = 1Ω(r)∇
2
A(r)

− n divA(r)
∣

∣

r∈Σ
δΣ(r)− n ·A(r)

∣

∣

r∈Σ
grad δΣ(r)−

n× curlA(r)
∣

∣

r∈Σ
δΣ(r) + +n×A(r)

∣

∣

r∈Σ
× grad δΣ(r) .

(41)

With the Coulomb gauge divA = 0, the generalized

Poisson equation of stationary magnetic field reads

∇2{A(r)1Ω(r)} = −µ0J(r)1Ω(r)

− n× curlA(r)
∣

∣

r∈Σ
δΣ(r) + n×A(r)

∣

∣

r∈Σ
× grad δΣ(r)

− n ·A(r)
∣

∣

r∈Σ
grad δΣ(r) . (42)

Comparing (42) to (33) one sees that in analogy to elec-

trostatic case, where the two surface terms represent the

field sources of scalar type — the surface charge density

−ε0n · gradV (r)
∣

∣

r∈Σ
and the surface electric dipole mo-

ment density −ε0nV (r)
∣

∣

r∈Σ
, in (42) there are two surface

terms representing the field sources of vector type — the

surface current density n×curlA(r)
∣

∣

r∈Σ

/

µ0 and the sur-

face magnetic dipole moment density n×A(r)
∣

∣

r∈Σ

/

µ0 .

Moreover, the last term in (42), though mathematically

sound misses any physical meaning.

However, the form of this integral is formally identical

with the electric field intensity due to the surface charge

density. Therefore, since the curl of such a field is zero, it

does not contribute to the magnetic induction vector B =

curlA , but is needed to guarantee the value A being zero

outside closed domain Ω. The differential formulation

(42) can be easily transformed into the integral expression

similarly as (34) was recast into (35). To obtain this

integral expression in a classical way is a much more

tedious operation as shown in [6, pp. 250-253].

5 GREEN FUNCTION FOR

THE INFINITE HALFSPACE

As it was already discussed, only if the surface charge

density and the surface dipole moment density in (35)

truly correspond to some physically realizable distribu-

tion of outside charges, then (35) holds correctly. There-

fore they cannot be given arbitrarily. In this sense (35) is

again over determined.

For the Dirichlet, Neumann or Cauchy problem, in-

stead of using the impulse response for the homogeneous

infinite space as in (35), the Green function must be con-

structed which fulfils the pertaining zero boundary con-

ditions.
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r(x,y,z)

z = 0

s(x,y)

Fig. 1. Volume and surface charge density distribution
representing zero boundary conditions

r(x,y,z)

z = 0

-r(x,y,-z)

Fig. 2. Zero boundary conditions represented through volume charge density
distribution and its mirror image

For the infinite half-space z > 0 and its boundary
Σ equal to the plane z = 0 the Green function for the
Dirichlet problem is the solution of

∇2G(R, r) = −δ(R− r), Z > 0, z > 0, (43)

together with the requirement G(R, r)|z=0 = 0. It can
be for Z > 0 obtained as an impulse response of the free
space (8) to the excitation in form of two δ -functions
with opposite sign placed symmetrically with respect to
z plane, δ(x, y, z)− δ(x, y,−z) in the form

G(R, r) =
1

4π
√

(X − x)2 + (Y − y)2 + (Z − z)2

−
1

4π
√

(X − x)2 + (Y − y)2 + (Z + z)2
.

(44)

Here G(R, r)
∣

∣

z=0
= 0 and

gradr G(R, r)
∣

∣

z=0
=

(X − x)ux + (Y − y)uy + Zuz

2π[(X − x)2 + (Y − y)2 + Z2]3/2
.

(45)

Thus, instead of (35) one has the formula

V (R) =

∫∫∫

Ω

ρ(r)G(R, r)

ε0
dv

−©

∫∫

Σ

V (r) gradr G(R, r) · dS ,

(46)

where now the boundary values V (r)
∣

∣

r∈Σ
can be chosen

arbitrarily.

On the other hand if one takes for the Green function
the impulse response of the free space (8) to the excitation
δ(x, y, z) + δ(x, y,−z) ie

G(R, r) =
1

4π
√

(X − x)2 + (Y − y)2 + (Z − z)2

+
1

4π
√

(X − x)2 + (Y − y)2 + (Z + z)2
,

(47)

then one gets

G(R, r)
∣

∣

z=0
=

1

2π[(X − x)2 + (Y − y)2 + Z2]3/2

(48)

and gradr G(R, r)
∣

∣

z=0
= 0. Instead of (46) for the Dirich-

let problem one has the formula for the Neumann problem

V (R) =

∫∫∫

Ω

ρ(r)G(R, r)

ε0
dv

+©

∫∫

Σ

gradV (r)G(R, r) · dS,

(49)

where the values gradV (r)
∣

∣

r∈Σ
can be chosen arbitrarily.

Let us take as an example the well known problem of
the planar metalic surface z = 0 and the volume density
of charge ρ(x, y, z) in the half space z > 0 as illustrated

in Fig. 1. The field intensity E(r) = − grad V (r) is
due to the volume charge distribution ρ(x, y, z) and the
not-a-priori-known surface density σ(x, y) of the induced
charge on the metallic surface. The problem is standardly
solved by the method of images sketched in Fig. 2. The
scalar potential due to both the physically existing charge
distribution ρ(x, y, z) in z > 0 and the virtual image
distribution ρM (x, y, z) = −ρ(x, y,−z) in z < 0 leads

using (10) to

V (X,Y, Z) =

1

4πε0

∫∫∫

z>0

ρ(x, y, z)
√

(X − x)2 + (Y − y)2 + (Z − z)2
dv

+
1

4πε0

∫∫∫

z<0

ρM (x, y, z)
√

(X − x)2 + (Y − y)2 + (Z − z)2
dv .

(50)
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This is the same result as if we used the first term in
(46) with the Green function (44), ie

V (X,Y, Z) =

1

4πε0

∫∫∫

z>0

ρ(x, y, z)
√

(X − x)2 + (Y − y)2 + (Z − z)2
dv

−
1

4πε0

∫∫∫

z>0

ρ(x, y, z)
√

(X − x)2 + (Y − y)2 + (Z + z)2
dv,

Z > 0 . (51)

Since V (r)|z=0 = 0 the second term in (46) does not
contribute to V (R) . The density of the induced surface
charge σ(x, y) can be determined as

σ(x, y) = ε0Ez(x, y) = −ε0uz · gradV (r)|z=0

The scalar potential can be then determined also by

V (X,Y, Z) =

1

4πε0

∫∫∫

z>0

ρ(x, y, z) dv
√

(X − x)2 + (Y − y)2 + (Z − z)2

+
1

4πε0

∫∫

z=0

σ(x, y) dS
√

(X − x)2 + (Y − y)2 + Z2
, Z > 0.

(52)

that corresponds to the first two terms of general formula
(35).

6 WAVE EQUATION IN THREE DIMENSIONS

The impulse response function for the three-dimen-
sional wave equation in the case of the lossless homoge-
neous isotropic infinitely extended medium is solution of
the equation

∇2g(r, t)−
1

c2
∂2g(r, t)

∂t2
= −δ(r)δ(t) , (53)

After the three dimensional Fourier transform in the
space domain we arrive at the equation formally identical
with (81) in [5]

∂2G(jk, t)

∂t2
+ c2k2G(jk, t) = c2δ(t) . (54)

After the one-dimensional inverse Fourier transform
giving the same result as (83) in [5]

g1(r, t) =
c

2
1(t){1(r + ct)− 1(r − ct)} . (55)

The three-dimensional impulse response accordingly (73)
equals

g(r, t) =
c

4πr
1(t){δ(r + ct)− δ(r − ct)} , (56)

or after the transformation of arguments of δ -functions

g(r, t) =
1(t)

4πr
{δ(t+ r/c) + δ(t− r/c)} . (57)

Since for the three-dimensional space as well as for
causal functions, r > 0 and t > 0 always hold, the
first δ -function (representing the “advanced” solution) is
meaningless, since the argument of the δ -function cannot
be equal to zero for any value of r and t . Therefore only
the “retarded” result remains

g(r, t) =
δ(t− |r|/c)

4π|r|
. (58)

This leads to the well-known solution of the wave equa-
tion for the dynamic potentials

∇2ϕ(r, t) −
1

c2
∂2ϕ(r, t)

∂t2
= −

ρ(r, t)

ε0
(59)

in form of the retarded potential

ϕ(R, t) =
1

4πε0

∫∫∫

∞

ρ
(

r, t− |R− r|/c
)

|R− r|
dv , (60)

simply obtained as the convolution of the source function
ρ(r, t)/ε0 with the impulse response (58).

7 CONCLUSIONS

It has been shown that the formalism of symbolic func-
tions together with their proper application and utiliza-
tion enables one to easily obtain in a unified manner com-
plicated formulas from the circuit theory and field theory
and to give them rather simple interpretation that fa-
cilitates deeper insight into the meaning of these formu-
las. In many textbooks they are merely presented with-
out deeper mathematical insight how they have been ob-
tained.

Appendix I

Three-Dimensional Fourier Transform of the Cen-

tro Symmetric Functions

The definition of one dimensional direct and inverse
Fourier transform is given in previous paper [5] formula
(96) in the form

F(jk) =

∞
∫

−∞

f(x) exp(−jkx) dx , (61)

f(x) =
1

2π

∞
∫

−∞

F(jk) exp(jkx) dk , (62)
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The three dimensional direct Fourier transform of the
function in the Cartesian co-ordinate system f(r) =
f(x, y, z) is defined analogously by

F(jk) = F(jkx, jky, jkz) =
∫∫∫

∞

f(r) exp{−jk · r} dv =

=

∞
∫∫∫

−∞

f(x, y, z) exp{−j(xkx + yky + zkz)} dxdy dz ,

(63)

and the inverse Fourier transform similarly by

f(r) =
1

(2π)3

∫∫∫

∞

F(jk) exp{jk · r}dvk , (64)

where dvk = dkxdkydkz .

If the function f(r) possesses the spherical symme-

try, ie f(x, y, z) = f3(r), where r =
√

x2 + y2 + z2 ,
then in spherical co-ordinate system the three dimen-
sional Fourier transform is also rotationally symmetrical
in spectral domain, ie F(jkx, jky, jkz) = F3(k), where

k =
√

k2x + k2y + k2z . The direct three dimensional Fourier

transform, in spherical coordinates with ϑ and θ , the po-
lar and azimuthal angles, yields

F3(k) =

∞
∫

0

π
∫

−π

2π
∫

0

f3(r)r
2 sinϑ exp{−jrk(cosϑ cos θ+

cosϑ sin θ + sinϑ)} drdϑdθ . (65)

After performing the two angle integrations one ob-
tains

F3(k) =
4π

k

∞
∫

0

f3(r) sin(kr)r dr . (66)

Analogous formula holds for the inverse transform too

f3(r) =
1

2π2r

∞
∫

0

F3(k) sin(kr)k dk . (67)

Comparing with the standard one-dimensional Fourier
transform (61), (62) re-casted for the even functions into
the form

F1(k) = 2

∞
∫

0

f1(r) cos{kr} dr , (68)

f1(r) =
1

π

∞
∫

0

F1(k) cos{kr} dk , (69)

one can easily recognise that

F3(k) =
4π

k

∞
∫

0

f(r) sin(kr)r dr

= −
4π

k

d

dk

∞
∫

0

f(r) cos(kr) dr = −
2π

k

dF1(k)

dk
, (70)

as well as

f3(r) =
1

2π2r

∞
∫

0

F3(k) sin(kr)k dk

= −
1

2π2r

d

dr

∞
∫

0

F3(k) cos(kr) dk = −
1

2kπr

df1(r)

dr
.

(71)

Shortly, if f3(r) = f1(r) then

F3(k) = −
2π

k

dF1(k)

dk
(72)

and, on the other hand, if F3(k) = F1(k) then

f3(r) = −
1

2πr

df1(r)

dr
. (73)

Appendix II

Three-Dimensional Delta Function and Surface

Delta Function

The three dimensional δ -function is in the Cartesian
coordinate system defined as a product of three one di-
mensional δ -functions

δ(r) = δ(x)δ(y)δ(z) , (74)

where r = xux + yuy + zuz is the radius vector in
the Cartesian coordinate system with the unit vectors
{ux,uy,uz} . The fundamental property of the δ -function

∫∫∫

∞

f(r)δ(r) dv = f(0) , (75)

is preserved also in three dimensions. Written in Carte-
sian coordinate system it simply means

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

f(x, y, z)δ(x)δ(y)δ(z) dxdy dz= f(0, 0, 0) .

(76)
The sifting property of the δ -function, ie the three di-
mensional convolution integral reads

∫∫∫

∞

f(r)δ(R − r)dv = f(R) . (77)
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From (75) we maintain
∫∫∫

∞

δ(r) dv = 1 . (78)

The same formulas hold also for vector functions, ie
∫∫∫

∞

F(r)δ(R − r) dv = F(R) . (79)

Let us consider the simply connected three dimen-
sional domain Ω with its closure — the closed boundary
surface Σ. The unit-step function 1Ω(r) equal to unity
inside Ω, zero outside, and 1/2 on the boundary Σ has
the property

∫∫∫

∞

f(r)1Ω(r) dv =

∫∫∫

Ω

f(r) dv , (80)

and, let us define also the surface delta function δΣ(r)
with the following property

∫∫∫

∞

f(r)δΣ(r) dv =©

∫∫

Σ

f(r) dS . (81)

We maintain that

grad1Ω(r) = −nδΣ(r) , (82)

where n is the normal unit vector of the boundary surface
directed outwards Ω. This is the three dimensional anal-
ogy to the one dimensional relation (119) d1(x)/ dx =
δ(x) shown in [5]. In a similar way also the grad δΣ(r)
can be defined by the relation

∫∫∫

∞

f(r) grad δΣ(r) dv = −©

∫∫

Σ

grad f(r) dS

(83)
as an analogy to

∞
∫

−∞

f(t)δ′(t) dt = −f ′(0) . (84)
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