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UNIFIED APPROACH TO THE IMPULSE RESPONSE AND
GREEN FUNCTION IN THE CIRCUIT AND FIELD THEORY,

PART I: ONE–DIMENSIONAL CASE

L’ubomı́r Šumichrast
∗

In the circuit theory the concept of the impulse response of a linear system due to its excitation by the Dirac delta
function δ(t) together with the convolution principle is widely used and accepted. The rigorous theory of symbolic functions,
sometimes called distributions, where also the delta function belongs, is rather abstract and requires subtle mathematical
tools [1], [2], [3], [4]. Nevertheless, the most people intuitively well understand the delta function as a derivative of the

(Heaviside) unit step function 1(t) without too much mathematical rigor. The concept of the impulse response of linear
systems is here approached in a unified manner and generalized to the time-space phenomena in one dimension (transmission
lines), as well as in a subsequent paper [5] to the phenomena in more dimensions (static and dynamic electromagnetic fields).
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1 INTRODUCTION

The response of a linear system to the excitation by
the Dirac impulse, or δ -function, is well-known as the
impulse response h(t) and is widely used in the circuit
theory. The linear system is characterized by its system
operator L{. . . } , where L{h(t)} = δ(t) holds. Knowing
the impulse response of the system, the response f(t)
to any excitation y(t), L{f(t)} = y(t), can be easily
determined in terms of the convolution

f(t) =

∫

∞

−∞

y(τ)h(t− τ)dτ . (1)

The idea of impulse excitation and impulse response in
time domain can be naturally extended to space domain
and to the treatment of more dimensional linear systems
of electromagnetics as well, particularly of the:

a) time and one spatial dimension – the case of transmis-
sion lines,

b) more spatial dimensions without time-dependence –
the case of static fields,

c) time and more spatial dimensions – the case of dynamic
fields.

One of the simple examples in electrostatics is the
representation of the point charge Q placed in the origin
in terms of the charge density equal to ρ(r) = Qδ(r).
Solution of the Poisson equation for the scalar potential
ϕ(r) of the point charge in the origin

∇2ϕ(r) = −Qδ(r)
/

ε0 , (2)

where ε0 is the permittivity, is given by the well-known
formula

ϕ(r) = Q
/

4πε0|r| . (3)

Thus, the impulse response for the Laplace operator g(r)
is g(r) = 1/4π|r| The well-known result of electrostatics
for any volume charge density distribution ρ(r)

ϕ(r) =

∫∫∫

∞

ρ(r′)

4πε0|r − r
′|

dv′ (4)

is in fact merely a convolution of the impulse response
with ρ(r)/ε0 .

In what follows we try to pursue and generalize these
ideas further and show that some theoretically tricky re-
sults can be obtained by relatively simple mathematical
tools starting from the plain second order differential op-
erator.

2 SECOND ORDER OPERATOR

IN TIME DOMAIN AND IN

ONE–DIMENSIONAL SPACE DOMAIN

Let us consider the simplest second order operator
L = ∂2/∂t2 in the time domain, or L = ∂2/∂x2 in the
space domain, and pertaining equations

d2f(t)

dt2
= y(t) ,

d2ϕ(x)

dx2
= q(x) , (5), (6)

where f(t) in (5) can be interpreted as eg a one-
dimensional position function of the mass-point moving
in the force field proportional to y(t), and ϕ(x) in (6)
physically represents the electric scalar potential due to
the charge density source ρ(x), q(x) = −ρ(x)/ε0 , ie the
one-dimensional Poisson equation of electrostatics.

The equations

d2hc(t)

dt2
= δ(t) ,

d2gs(x)

dx2
= δ(x) (7), (8)

∗ Slovak University of Technology, Institute of Electrical Engineering Ilkovičova 3, SK-81219 Bratislava, Slovakia,
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define the impulse responses in time and space domains.
Due to the causality principle valid in the time domain
hc(t) is given as a causal function

hc(t) = h(t)1(t) , (9)

and due to the symmetry of the homogeneous space the
impulse response gs(t) as a centro-symmetric function
(see (110) in Appendix I)

gs(t) =
1

2
{hc(x) + hc(−x)} . (10)

The Laplace transform of (7) for causal problems and
the Fourier transform of (8) for centro-symmetric prob-
lems lead to

Hc(p) = 1/p2, Gs(jω) = 1/(jω)2, (11,12)

yielding after the inverse transforms

hc(t) = t1(t),gs(x) = 1
2 {x1(x) − x1(−x)} . (13, 14)

The response to the arbitrary excitation y(t), or q(x) is
expressed as the respective convolution integrals

f(t) =

∫

∞

−∞

y(τ)hc(t− τ)dτ , (15)

ϕ(x) =

∫

∞

−∞

q(ξ)gs(x− ξ)dξ . (16)

Other form of (15) due to the causal character of hc(t) =
h(t)1(t) in (15) reads

f(t) =

∫ t

−∞

y(τ)h(t− τ)dτ , (17)

clearly illustrating the causality principle – to the result
f(t) at the time instant t contribute only the “previous”
values of the excitation function y(τ), τ ∈ (−∞, t).

For t > 0 can be (17) recast into the form

f(t) = f0(t) +

∫ t

0

y(τ)h(t− τ)dτ , t > 0 ,

f0(t) =

∫ 0

−∞

y(τ)h(t− τ)dτ , t > 0 .
(18,19)

Reformulating (5) in terms of causal functions fc(t) =
f(t)1(t), yc(t) = y(t)1(t) leads, due to (122) to the
equation with the embodied initial conditions f(0) and
f ′(0)

d2fc(t)

dt2
= yc(t) + f ′(0)δ(t) + f(0)δ′(t) (20)

with the solution

fc(t) = f(t)1(t) = 1(t)

∫ t

0

y(τ)h(t− τ)dτ+

f ′(0)hc(t) + f(0)h′c(t) . (21)

Notice the difference between the formulas (17) and
(21) as well as between (5) and (20). Both are defined
for the whole time axis t ∈ (−∞,∞), but the latter
formulate the solution in terms of causal functions fc(t),
ie the solution fc(t) equal to zero for t < 0, and to the
true values f(t) for t > 0, while the former gives f(t)
for any t ∈ (−∞,∞).

Comparison of (19) with the first two terms of (21)
yields

f0(t)1(t) = f ′(0)hc(t) + f(0)h′c(t) (22)

ie in the positive time instances t > 0 the history due to
the past excitation (at the negative time values t < 0) is
encoded into the initial conditions f(0) and f ′(0).

Taking into account the centro-symmetric character
(10) of gs(x) the convolution integral (16) can be written
as

ϕ(x) =
1

2

∫ x

−∞

q(ξ)hc(x− ξ)dξ +
1

2

∫

∞

x

q(ξ)hc(x− ξ)dξ .

(23)
For x ∈ (0, a) one can write

ϕ(x) = ϕ0(x) +

∫ a

0

q(ξ)gs(x− ξ)dξ + ϕa(x) , x ∈ (0, a)

(24)

ϕ0(x) =
1

2

∫ 0

−∞

q(ξ)hc(x− ξ)dξ , x ∈ (0, a) , (25)

ϕa(x) =
1

2

∫

∞

a

q(ξ)hc(x− ξ)dξ , x ∈ (0, a) , (26)

Similar to the previous development one can force the
solution to be zero outside the bounded interval x ∈ (0, a)
by introducing the function ϕΩ(x)

ϕΩ(x) = ϕ(x) [1(x) − 1(x− a)] = ϕ(x)1Ω(x) , (27)

where 1Ω(x) =
[

1(x) − 1(x − a)
]

, ie ϕΩ(x) is equal to

zero outside the simply connected domain Ω with finite
support, which, in the one-dimensional case, is simply the
interval x ∈ (0, a), Ω: {x ∈ (0, a)} . Then (6) is modified
into

d2ϕΩ(x)

dx2
= q(x)1Ω(x)+

ϕ′(x)
∣

∣

x∈Σ
δΣ(x) + ϕ(x)

∣

∣

x∈Σ
δ′Σ(x) , (28)

where Σ is the closure of Ω, in our one dimensional
case it means simply the two points x = 0 and x = a ,
Σ : {x = 0, x = a} , and the meaning of symbols in (28)
is

d1Ω(x)/dx = δΣ(x) = [δ(x) − δ(x− a)] , (29)

ϕ′(x)
∣

∣

x∈Σ
δΣ(x) = ϕ′(0)δ(x)− ϕ′(a)δ(x − a) , (30)

ϕ(x)
∣

∣

x∈Σ
δ′Σ(x) = ϕ(0)δ′(x) − ϕ(a)δ′(x− a) . (31)
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The solution of (28) in terms of convolution reads

ϕΩ(x) =

∫

∞

−∞

{

q(ξ)1Ω(ξ) + ϕ′(ξ)
∣

∣

ξ∈Σ
δΣ(ξ)+

ϕ(ξ)
∣

∣

ξ∈Σ
δ′Σ(ξ)

}

gs(x− ξ)dξ , (32)

or explicitly

ϕΩ(x) = 1Ω(x)

∫ a

0

q(ξ)gs(x− ξ)dξ

+
{

ϕ′(0)gs(x) + ϕ(0)g′s(x)
}

−
{

ϕ′(a)gs(x− a) + ϕ(a)g′s(x − a)
}

. (33)

Evaluation of (33) leads to the true values ϕ(x) within
the interval x ∈ (0, a), and to zero outside this inter-
val. This means that the influence of the excitation q(x)
outside x ∈ (0, a) is transformed into the boundary val-

ues , ϕ(0), ϕ′(0), ϕ(a) and ϕ′(a), ie as far as the correct
boundary values are known, (33) provides the correct re-
sult within x ∈ (0, a) and zero outside.

The classical way to obtain (33) is as follows: Consider
the integral

∫ a

0

{

ϕ′(ξ)gs(x− ξ)− ϕ(ξ)g′s(x − ξ)
}′

dξ . (34)

Performing both, the derivative in the curly brackets of
(34), as well as the integration of (34), one arrives to the
one-dimensional variant of the well known Green identity

∫ a

0

{

ϕ′′(ξ)gs(x− ξ)− ϕ(ξ)g′′s (x− ξ)
}

dξ

=
{

ϕ′(a)gs(x− a) + ϕ(a)g′s(x− a)
}

−
{

ϕ′(0)gs(x+ a) + ϕ(0)g′s(x+ a)
}

. (35)

It should be noticed that the derivatives in (34) are with
respect to ξ , while in the RHS of (35) they are meant
with respect to x (therefore the change of the sign).
Substitution from (6) and (8) yields

ϕ(x) =

∫ a

0

q(ξ)gs(x− ξ)dξ

+
{

ϕ′(0)gs(x) + ϕ(0)g′s(x)
}

−
{

ϕ′(a)gs(x− a) + ϕ(a)g′s(x− a)
}

. (36)

This is seemingly the same result as in (33) However, from
(33) it is apparent that for x /∈ (0, a) the result is zero
and that cannot be easily seen from (36). In fact (28) is
the differential formulation of the classical result (36).

3 THE GREEN FUNCTION

With the four boundary values ϕ(0), ϕ′(0), ϕ(a) and
ϕ′(a) in (33), or (36), the problem is clearly over deter-
mined, ie they cannot be chosen arbitrarily. For the op-
erators of second order only two boundary conditions can

be freely chosen, ie either the pair ϕ(0), ϕ(a) (Dirichlet
problem), or the pair ϕ′(0), ϕ′(a) (Neumann problem),
or the combination pairs either ϕ(0), ϕ′(a), or ϕ′(0),
ϕ(a) (Cauchy problem), respectively.

To achieve this goal the special type of impulse re-
sponse called the Green function G(x, ξ), must be con-
structed, which fulfils the equation

d2G(x, ξ)

dx2
= δ(x− ξ) (37)

and the pertaining zero boundary conditions on the do-
main x, ξ ∈ Ω, ie instead of (32) one obtains

ϕ(x) =

∫

Ω

q(ξ)G(x, ξ)dξ+

∫

Ω

{

ϕ′(ξ)
∣

∣

ξ∈Σ
δΣ(ξ) + ϕ(ξ)

∣

∣

ξ∈Σ
δ′Σ(ξ)

}

G(x, ξ)dξ , (38)

leading specifically to

ϕ(x) =

∫ a

0

q(ξ)G(x, ξ)dξ+

{

ϕ′(0)G(x, 0) − ϕ(0)G′(x, 0)
}

−
{

ϕ′(a)G(x, a) − ϕ(a)G′(x, a)
}

(39)

where derivatives of G(x, ξ) are with respect to ξ .

As mentioned above G(x, ξ) has to fulfil pertaining
boundary conditions, ie either G(x, 0) = 0, G(x, a) = 0
(the Dirichlet problem), or G′(x, 0) = 0, G′(x, a) = 0
(the Neumann problem) and analogously for two possible
variants of the Cauchy problem. Then only two boundary
values remain in (39). In what follows we shall focus only
on the Dirichlet problem.

The Green function G(x, ξ) can be constructed by
either of the following three ways [4].

The first way: Since we are interested only in solution
on the interval x, ξ ∈ (0, a) one can construct the odd
periodic series of δ -impulses δ(x − ξ) − δ(x + ξ) for x
on the interval x ∈ (−a, a), and for ξ on the interval
ξ ∈ (0, a), ie

∞
∑

k=−∞

δ(x− ξ + 2ka)− δ(x+ ξ + 2ka) , (40)

leading formally to the solution

G(x, ξ) =

∞
∑

k=−∞

gs(x− ξ + 2ka)− gs(x+ ξ + 2ka) , (41)

provided (41) converges.

The second way: Both (40) and (41) can be expressed
in form of the Fourier series. For (40) one obtains

δ(x− ξ)− δ(x+ ξ) =
2

a

∞
∑

n=1

sin(nπξ/a) sin(nπx/a) , (42)
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and (41) stems from (12) and (42) in the form

G(x, ξ) =

∞
∑

n=1

−2a

(nπ)2
sin(nπξ/a) sin(nπx/a) . (43)

The third way: Direct integration of (37) with respect
to x on the interval x ∈ (0, a) on assumption of zero
mean value of G′(x, ξ) leads to

G′(x, ξ) =
1

a

{

(ξ − a) , 0 < x < ξ < a ,

ξ , 0 < ξ < x < a .
(44)

Second integration yields the Green function for the
Dirichlet problem in the closed form

G(x, ξ) =
1

a

{

(ξ − a)x , 0 < x < ξ < a ,

ξ(x − a) , 0 < ξ < x < a .
(45)

The equivalence of (43) and (45) can be proved also by
eg the direct calculation of the Fourier-series-expansion
of (45).

Thus instead of (39) one obtains for x ∈ (0, a) the
formula

ϕ(x) =

∫ a

0

q(ξ)G(x, ξ)dξ − ϕ(0)G′(x, 0) + ϕ(a)G′(x, a)

(46)
where now ϕ(0) and ϕ(a) can be chosen arbitrarily.

For (6) and the pure boundary-value-problem, q(x) =
0, the solution of the Laplace equation reads

ϕ(x) = ϕ(a)G′(x, a)− ϕ(0)G′(x, 0) . (47)

With (45) it represents the linear dependence of the elec-
tric field potential between the two infinitely extended
plate electrodes

ϕ(x) = ϕ(a)[x/a]− ϕ(0)[(x − a)/a] . (48)

Note in (45) that if ξ = 0, or ξ = a the values G(x, 0)
and G(x, a) are identically equal to zero, therefore ϕ′(0)
and ϕ′(a) disappear from (39).

Taking into account (14), the Green function (45), can
be written in the form

G(x, ξ) = gs(x− ξ) +
a− 2ξ

2a
gs

(

x−
aξ

2ξ − a

)

. (49)

This can be understood as a kind of mirror image of
the point x = ξ inside the interval (0, a) to the point
xm = aξ/(2ξ − a) outside the interval (0, a), particu-
larly the points x ∈ (0, a/2) are mirrored to the points
xm ∈ (−∞, 0), and the points x ∈ (a/2, a), to the points
xm ∈ (a,∞). The integral in (46) can be interpreted as
a contribution of the virtual qv(x) outside the interval
x ∈ (0, a) to the result inside x ∈ (0, a), ie

ϕ(x) =

∫ 0

−∞

qv(ξ)gs(x− ξ)dξ +

∫ a

0

q(ξ)gs(x − ξ)dξ

+

∫

∞

a

qv(ξ)gs(x− ξ)dξ , x ∈ (0, a) , (50)

qv(x) =
a

2a− 4x
q
( ax

2x− a

)

, x /∈ (0, a) . (51)

Thus, using this mirror-image-source, the problem on the
bounded domain Ω can be transformed into the problem
on the infinite space and the simple impulse response (14)
used instead of the Green function (45).

4 TRANSIENTS IN THE RLC–CIRCUIT

Let us take a simple example in time domain — the
current i(t) in the serial RLC-circuit driven by the volt-
age source u(t) is governed by the equation

LCi′′(t) +RCi′(t) + i(t) = Cu′(t) . (52)

By using the transformation i(t) = f(t) exp(−tR/2L)
one can transform (52) into the equation of the type

L{f(t)} =
d2f(t)

dt2
+ ω2

0f(t) = y(t) , (53)

ω2
0 =

1

LC
−

R2

4L2
, y(t) =

1

L
u′(t) exp

tR

2L

Equation for the impulse response hc(t) reads

d2hc(t)

dt2
+ ω2

0hc(t) = δ(t) , (54)

or in the Laplace transform domain

(p2 + ω2
0)Hc(p) = 1 . (55)

The inverse transform yields the causal impulse response

hc(t) = 1(t) sin(ω0t)/ω0 . (56)

The causal solution of (53) is

f(t) =

∫ t

−∞

y(τ)
sinω0(t− τ)

ω0
dτ , (57)

and for the current in (52) one obtains

i(t) =
1

L
e−tR/2L

∫ t

−∞

u′(τ)eτR/2L sinω0(t− τ)

ω0
dτ . (58)

For the initial problem (53) yields the equation

d2fc(t)

dt2
+ ω2

0fc(t) = yc(t) + f ′(0)δ(t) + f(0)δ′(t) (59)

with the solution

fc(t) = f(t)1(t) = 1(t)

∫ t

0

y(τ)
sinω0(t− τ)

ω0
dτ

+ f(0)1(t) cos(ω0t) + f ′(0)1(t) sin(ω0t)/ω0 . (60)

For the causal current response one obtains

i(t)1(t) =
1

L
e−tR/2L 1

t

{
∫ t

0

u′(τ)eτR/2L sinω0(t− τ)

ω0
dτ

+ i0

[

cos(ω0t)−
R

2L

sinω0t

ω0

]

+ i′0
sinω0t

ω0

}

. (61)

The initial conditions i(0) and i′(0) represent the ini-
tial energy state of the circuit, as well as the initial value
of the excitation u(0) that is lost in the derivative u′(t)
in the RHS of (52). The energy of the magnetic field of an

inductor Li2(0)/2 is encoded in i(0) directly, and the en-

ergy content of the electric field of a capacitor Cu2
C(0)/2

is encoded in i′(0), since i′(0) = [u(0)−uC(0)−Ri(0)]
/

L .
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5 HARMONIC STEADY–STATE OF

ONE–DIMENSIONAL WAVE PROPAGATION

The same type of operator in space domain (Helmholtz
equation)

L {ϕ(x)} =
d2ϕ(x)

dx2
+ β2

0ϕ(x) = q(x) (62)

describes (in complex representation) the one-dimensional
case of the steady-state harmonic wave propagation with
the amplitude f(x, t) = ϕ(x) exp(jωt), eg wave along the
lossless transmission line, characterised by the complex
amplitude ϕ(x) and the complex excitation source q(x).
Equation for the centro-symmetric response gs(x) is

d2gs(x)

dx2
+ β2

0gs(x) = δ(x) . (63)

In the Fourier transform domain it reads

[

(jk)2 + β2
0

]

Gs(jk) = 1 . (64)

Inverse transform yields in analogy to (56)

gs(x) = {1(x) − 1(−x)} sin(β0x)/2β0 . (65)

One should consider that, for the time dependance
exp(jωt), since sin(β0x) = 1

2j [exp(jβx) − exp(−jβx)] ,

both types of waves — outbound waves propagating
“away” from the source δ(x), ie exp(−jβx) for x > 0
and exp(jβx) for x < 0, as well as inbound waves prop-
agating towards the source, ie exp(jβx) for x > 0 and
exp(−jβx) for x < 0, are encompassed in (65). For phys-
ical reasons there may exist only outbound waves on the
infinite domain x ∈ (−∞,∞). The remedy is to add to
(65) the solution of the homogeneous equation in the form
g0(x) = j cos(β0x)/2β0 leading thus to

gs(x) + g0(x) = j
1(x) exp(−jβ0x)− 1(−x) exp(jβ0x)

2β0
.

(66)

The response ϕ(x) due to q(x) on the infinite domain
x ∈ (−∞,∞), can be obtained by the convolutory inte-
gral of type (16)

ϕ(x) =
j exp(−jβ0x)

2β0

∫ x

−∞

q(ξ) exp(jβ0ξdξ

+
j exp(jβ0x)

2β0

∫

∞

x

q(ξ) exp(−jβ0ξdξ . (67)

The first integral are contributions to ϕ(x), in accor-
dance with the Huyghen’s principle, of the forward propa-
gating waves emanating from the source distribution q(ξ)
in the points ξ < x and the second of the backwards
propagating waves from the source distribution q(ξ) in
the points ξ > x .

The Green function for the Helmholtz equation (62)
and the Dirichlet problem on the interval x ∈ (0, a) can

be constructed following the development in the preced-
ing paragraph 3 in the form of Fourier series

G(x, ξ) =

∞
∑

n=1

−2/a

(nπ/a)2 + β2
0

sin(nπξ/a) sin(nπx/a) ,

(68)
as well as in the closed form

G(x, ξ) =
1

β0 sin(β0a)

×

{

sin{β0(ξ − a)} sin(β0x) , 0 ≤ x ≤ ξ ≤ a ,

sin(β0ξ) sin{β0(x− a)} , 0 ≤ ξ ≤ x ≤ a .
(69)

In case of the transmission lines and plate waveguides
the pure boundary-value-problem is typical. The feeding
of the line by a harmonic voltage source at x = 0 is given
by the (complex amplitude) boundary value ϕ(0) = ϕ0 ,
and short-circuited line at x = a , ϕ(a) = 0, leads, using
(47), to the standing wave

ϕ(x) = −ϕ0G
′(x, 0) = ϕ0

sin{β0(a− x)}

sin(β0a)
. (70)

thus comprising the interference of both, the forward (di-
rect) and backward (reflected) wave.

6 ONE DIMENSIONAL WAVE EQUATION

––– THE TRANSMISSION LINE

Waves on the transmission line are described by the
homogeneous equation

∂2f(x, t)

∂x2
−af(x, t)−2b

∂f(x, t)

∂t
−

1

c2
∂2f(x, t)

∂t2
= 0 (71)

with a = R0G0 , b = 1
2

(

R0C0 + G0L0

)

, 1/c2 = L0C0 ,
where the constants R0 , G0 , L0 and C0 are the dis-
tributed resistance, conductance, inductance and capaci-
tance of the homogeneous line respectively.

Taking the initial condition f(x, 0) = exp(−jkx), ie in
form of the harmonic (monochromatic) wave amplitude
with the wavenumber k and the wavelength λ = 2π/k
one easily arrives to the solution [2]

f(x, t) = exp(−bc2t) exp {−jk(x± vt)} , (72)

representing thus the direct and reverse wave attenuated
in time and propagating along x with the phase velocity

v = c
√

1− (b2c2 − a)/k2 . (73)

The pertaining angular frequency of this harmonic wave
is

ω = kv = c
√

k2 − (b2c2 − a) , (74)
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leading to the frequency dependence (dispersion) of the
wavenumber

k(ω) =
√

(ω/c)2 + (b2c2 − a) , (75)

and of the phase velocity

v(ω) =
c

√

1 + c2(b2c2 − a)/ω2
. (76)

For b2c2−a > 0, ie the phase velocity increasing with the
frequency, we have the anomalous dispersion case, while
for b2c2 − a < 0, ie the phase velocity decreasing with
the frequency, we have the normal dispersion case. Since
for the transmission line

b2c2 − a = 1
4

(

R0

√

C0/L0 −G0

√

L0/C0

)2
(77)

holds, the transmission line is always an anomalous-
dispersion-system, provided the distributed parameters
of the line are constants independent from ω .

Using the substitution f(x, t) = ψ(x, t) exp(−bc2t) in
(71) yields

∂2ψ(x, t)

∂x2
− αψ(x, t) −

1

c2
∂2ψ(x, t)

∂t2
= 0 , (78)

where α = a − b2c2 . If a = b2c2 , ie R0C0 = G0L0 , the
transmission line is distortionless and (78) yields

L{ψ(x, t)} =
∂2ψ(x, t)

∂x2
−

1

c2
∂2ψ(x, t)

∂t2
= 0 . (79)

Only this dispersionfree case will be treated further.

The impulse response g(x, t) for the infinite free space,
x ∈ (−∞,∞), is the solution of the equation

∂2g(x, t)

∂x2
−

1

c2
∂2g(x, t)

∂t2
= −δ(x)δ(t) , (80)

where the two δ -functions on the right side represent in
space domain the radiating point source, and in the time
domain an infinitely short flash.

The space-domain Fourier transform g(x, t)
FT
←→ G(jk, t)

of (80) yields

∂2G(jk, t)

∂t2
+ c2k2G(jk, t) = c2δ(t) (81)

analogous to (54). The solution analogous to (56) reads

G(jk, t) = 1(t)c sin(ckt)/k , (82)

The inverse Fourier transform of (82) yields

g(x, t) =
c

2
1(t){1(x+ ct)− 1(x− ct)} . (83)

On the other hand, performing first the Laplace trans-

form g(x, t)
LT
←→ G(x, p) of (80) yields the equation

∂2G(x, p)

∂x2
−
p2

c2
G(x, p) = −δ(x) (84)

with the solution analogous to (66) that yields

g(x, t) =
c

2
{1(−x)1(t+ x/c) + 1(x)1(t− x/c)} . (85)

an expression equivalent to (83).

The wave character of the response is clearly mani-

fested — either from (83) on the positive portion of the

x-axis the trailing edge of the spatial rectangular step

running with the velocity c to +∞ (forward wave) and

on the negative portion of the x-axis the leading edge of

the spatial rectangular step running to −∞ (backward

wave), or from (85) shoving the time delay, equal to x/c ,

needed for unit step to arrive to the point x .

The response to any excitation q(x, t), ie the solution

of the equation L{ψ(x, t)} = −q(x, t), reads

ψ(x, t) =

∫

∞

−∞

∫

∞

−∞

q(ξ, τ)g(x − ξ, t− τ)dτdξ

=
c

2

∫ t

−∞

∫ x+c(t−τ)

x−c(t−τ

g(ξ, τ)dξdτ . (86)

For the causal and bounded response ψcΩ(x, t) =

ψcΩ(x, t)1(t)1Ω(x) one obtains the equation

L{ψcΩ(x, t)} = −qcΩ(x, t)−c−2[ψ′(x, 0)δ(t)+ψ(x, 0)δ′(t)]

+ ∂ψ(x, t)/∂x
∣

∣

x∈Σ
δΣ(x) + ψ(x)

∣

∣

x∈Σ
δ′Σ(x) . (87)

The Green function for zero boundary conditions

(Dirichlet problem) on the interval x ∈ (0, a) is obtained

as a solution of (81) having replaced δ(x) in the RHS

with infinite series (40). The solution in terms of infinite

series of mirror images represents the waves reflected on

the boundaries x = 0 and x = a

G(x, ξ, t) =










































c
2

{
∑

∞

k=0 1
(

t− x−ξ+2ka
c

)

− 1
(

t+ x+ξ−2ka
c

)

∑

∞

k=0 1
(

t− ξ−x+2ka
c

)

− 1
(

t− ξ+x+2ka
c

)}

,

0 ≤ ξ ≤ x ≤ a ,
c
2

{
∑

∞

k=0 1
(

t− x−ξ+2ka
c

)

− 1
(

t− x+ξ+2ka
c

)

∑

∞

k=0 1
(

t− x−ξ+2ka
c

)

− 1
(

t− ξ+x−2ka
c

)}

,

0 ≤ x ≤ ξ ≤ a .

(88)

For the pure boundary problem, ie the transmission

line fed by a voltage source ψ(0, t) = ψ0(t) at x =

0, and short-circuited at x = a , ψ(a, t) = 0 the wave

distribution along the line is obtained as

ψ(x, t) =

∫

∞

−∞

ψ0(τ)G
′(x, 0, t− τ)dτ , x ∈ (0, a) , (89)
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where G′(x, 0, t) = ∂G(x, ξ, t)/∂ξ
∣

∣

ξ=0
for 0 ≤ ξ ≤ x ≤ a .

Since

G′(x, 0, t) = δ(t− x/c)+
∑∞

k=1

{

δ
(

t− 2ka+x
c

)

− δ
(

t− 2ka−x
c

)}

, (90)

the result

ψ(x, t) =

∫

∞

−∞

ψ0(τ)G
′(x, 0, t− τ)dτ = ψ0(t− x/c)

+
∑∞

k=1

{

ψ0

(

t− x+2ka
c

)

− ψ0

(

t+ x−2ka
c

)}

(91)

holds, representing thus the time signal ψ0(t) projected
on the interval x ∈ (0, a) of the x-axis with subsequent
negative reflections in the boundary points.

The impulse response for distortion-free transmission
line with losses is

g(x, t) = c
2 exp(−bc2t)

{

1(−x)1
(

t+ x/c
)

+

1(x)1
(

t− x/c
)}

, (92)

that leads to analogous formula for the boundary problem
as (93) now in the form

G′(x, 0, t) = exp(−bcx)δ(t− x/c)

+
∑∞

k=1

{

exp(−bc[2ka+ x]
)

δ(t− [2ka+ x]/c)

− exp(−bc[2ka− x])δ(t − [2ka− x]/c)
}

(93)

with the result

ψ(x, t) = exp(−bcx)ψ0(t− x/c)

+
∑∞

k=1

{

exp(−bc[2ka+ x])ψ0(t− [x+ 2ka]/c)

− exp(−bc[2ka− x])ψ0(t+ [x− 2ka]/c)
}

(94)

The impulse response for the full wave equation oper-
ator with dispersion (71) has been solved in [2] with the
result

g(x, t) =
c

2
exp(−bc2t)J0

(
√

[b2c2 − a][c2t2 − x2]
)

×
{

1(−x)1(t+ x/c) + 1(x)1(t− x/c)
}

(95)

where J0 is the Bessel function. Thus, in the case of
anomalous dispersion the impulse response possesses an
oscillatory character.

7 CONCLUSIONS

It was shown that the formalism of symbolic functions
together with their proper application and utilization of
the convolution principle enables one to easily obtain in
a unified manner complicated formulas for the linear sys-
tems - from the circuit theory to the theory of transmis-
sion lines - and to give them rather simple interpretation
that facilitates deeper insight into the meaning of these
formulas.

Appendix I. The Fourier and Laplace transform

The Fourier transform pair in the time domain,

f(t)
FT
←→ F(jω), where F(jω) denotes the spectral den-

sity of the function f(t), is defined as the direct and in-
verse transform in the form

F(jω) =

∫

∞

−∞

f(t) exp(−jωt)dt , (96)

f(t) =
1

2π

∫

∞

−∞

F(jω) exp(jωt)dω , (97)

where ω is termed the angular frequency. The Laplace

transform F (p), fc(t)
LT
←→ F (p), is a special modifi-

cation of the Fourier transform for “causal” functions
fc(t) = f(t)1(t), where 1(t) is the Heaviside unit-step
function. Since fc(t) = f(t)1(t) is different from zero
only on the positive part of the axis t , it can be addi-
tionally damped by an exponential factor exp(−σt). Let
fc(t, σ) = f(t) exp(−σt)1(t). Then the Fourier transform

F(jω, σ) =

∫

∞

−∞

f(t)1(t) exp(−σt) exp(−jωt)dt , (98)

is in fact the standard definition of the Laplace transform

F (p) = F(jω, σ) =

∫

∞

0

f(t) exp(−pt)dt , (99)

where p = σ + jω is the complex frequency.

The inverse Laplace transform can be easily obtained
from the inverse Fourier transform (102) in the well-
known form

fc(t) = f(t)1(t) =
1

2πj

∫ σ+j∞

σ−j∞

F (p) exp(pt)dp . (100)

For the Fourier transform in the space domain the follow-
ing notation will be used

F(jk) =

∫

∞

−∞

f(x) exp(−jkx)dx , (101)

f(x) =
1

2π

∫

∞

−∞

F(jk) exp(jkx)dk , (102)

where k is commonly termed the wavenumber.

The Fourier and Laplace transforms of the Dirac func-
tion δ(t), the Heaviside unit-step function 1(t), and
t1(t) read

1
LT
←→ δ(t)

FT
←→ 1 , (103)

1/p
LT
←→ 1(t)

FT
←→ 1/jω + πδ(ω) , (104)

1/p2 LT
←→ t1(t)

FT
←→ 1](jω)2 + jπδ′)ω) . (105)
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Here the complication with the functions not converging
to zero for t→∞ , in form of δ -functions in their Fourier
spectra is clearly manifested.

The formally identical expressions in the Laplace and
Fourier transform domains lead to different originals, eg

on the contrary to (104) for the inverse space-domain
Fourier transform the symmetry in space holds

1/(jk)
FT
←→

1

2
sgn(x) =

1

2

(

1(x)− 1(−x)
)

, (106)

1/(jk)2
FT
←→

1

2

(

x1(x) − x1(−x)
)

, (107)

or as the further examples show

1

p2 + Ω2

LT
←→

sin(Ωt)

Ω
1(t) , (108)

1

(jk)2 + β2

FT
←→

1

2β
[sin(βx)1(x)− sin(βx)1(−x)] .

(109)

Hence, while the inverse Laplace transform is suitable
for solving the time domain problems, where the princi-
ple of causality holds, the inverse Fourier transform is
suitable to solve the problems of the infinite homoge-
neous and isotropic space where the principle of sym-
metry holds. Generally, if the impulse responses hc(t),
gs(x) are solutions of the formally identical equations
L{hc(t)} = δ(t) and L{gs(x)} = δ(x), ie if for p = jk
H(p) and G(jk) are formally of the same form, as eg in
(108) and (109), then, depending on whether the operator
L is of even or odd order, the relation

gs(x) = 1
2 [hc(x)± hc(−x)] (110)

between the causal impulse response hc(t) in time domain
and the (even or odd) centrosymmetric impulse response
gs(x) in space domain holds.

Appendix II. Some properties of the Dirac δ -
function and the unit step function

The fundamental property of the Dirac δ -function is
the well-known relation

∫

∞

−∞

f(t)δ(t)dt = f(0) . (111)

Since no regular continuous or discontinuous function
possesses this property δ(t) is often denoted as the sym-
bolic function, distribution, or defined only in the sense
of a functional. From (111) it stems straightforwardly

∫

∞

−∞

δ(t)dt = 1 , (112)

ie the unit δ -impulse has always unit area. The convolu-
tion integral

∫

∞

−∞

f(τ)δ(t − τ)dτ = f(t) (113)

represents the so called sifting property of the δ -function.

From the above the following properties can be easily
inferred

f(t)δ(t) = f(0)δ(t) , tδ(t) = 0 , δ(−t) = δ(t) , (114)

For the derivatives of δ -function the following properties
hold

∫

∞

−∞

f(t)δ(n)(t)dt = (−1)nf (n)(0) , (115)

∫

∞

−∞

f(t− τ)δ(n)(τ)dτ = f (n)(t) , (116)

∫

∞

−∞

f(t− τ)τnδ(n)(τ)dτ = n!f(t) , (117)

δ(n)(t) = (−1)nδ(n)(−t) , tnδ(n)(t) = (−1)nn!δ(t) .
(118)

The derivatives of the unit step function 1(t) lead to
the δ -function and its derivatives

d1(t)

dt
= δ(t) ,

d2[t1(t)]

dt2
= δ(t) , (119)

dn[tn1(t)]

dtn
= n!δ(t) . (120)

Hence, the derivatives of the causal function fc(t) =
f(t)1(t) are

f ′

c(t) = f ′(t)1(t) + f(0)δ(t) , (121)

f ′′

c (t) = f ′′(t)1(t) + f ′(0)δ(t) + f(0)δ′(t) , (122)

f (n)
c (t) = f (n)(t)1(t) +

n
∑

i=1

f (n−i)(0)δ(i−1)(t) . (123)
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