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FAULT IDENTIFICATION BASED ON NLPCA
IN COMPLEX ELECTRICAL ENGINEERING

Yagang Zhang — Zengping Wang — Jinfang Zhang
∗

The fault is inevitable in any complex systems engineering. Electric power system is essentially a typically nonlinear
system. It is also one of the most complex artificial systems in this world. In our researches, based on the real-time
measurements of phasor measurement unit, under the influence of white Gaussian noise (suppose the standard deviation
is 0.01, and the mean error is 0), we used mainly nonlinear principal component analysis theory (NLPCA) to resolve fault
identification problem in complex electrical engineering. The simulation results show that the fault in complex electrical
engineering is usually corresponding to the variable with the maximum absolute value coefficient in the first principal
component. These researches will have significant theoretical value and engineering practical significance.

K e y w o r d s: fault identification, nonlinear principal component analysis, NLPCA, complex system theory, electrical
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1 INTRODUCTION

The fault is inevitable in any complex systems engi-

neering. In general, a fault is a deviation from the normal

behavior in the equipment or its components, and it is
a process abnormality or symptom. It can also be de-

fined as a departure from an acceptable range of an ob-

served variable or calculated parameter associated with
the equipment. The faults may arise in the basic techno-

logical equipment or in its measurement and control in-

struments, and may represent performance deterioration,
partial malfunctions or total breakdowns [1–4]. The de-

tection procedure locates the process or unit malfunction

that caused the symptoms.

The goal of fault detection is to ensure the success

of the planned operations by recognizing anomalies of
system behavior. Fault detection is a well established

concept in many areas of applied systems engineering. It

implies the capability of determining, either actively or
passively, whether a system is functioning as intended or

as modeled. A system with faults does not necessarily

imply that the system is not functioning. Detecting a
fault involves identifying a characteristic of the system,

when a fault occurs, which can be distinguished from

other characteristics of the system. Generally speaking,
the process of fault detection can be divided into three

main steps: [5–8]

• Alarm: In this process, information on current process-

ing status will be extracted from the signals measured

by internal sensors;

• Identification: This process will determine the location

of a failure;

• Evaluation: The evaluation process involves the deter-
mination of the extent or severity of a failure.

Electric power system is essentially a typically nonlin-
ear system. It is also one of the most complex artificial
systems in this world. As we know, the safe, steady, eco-
nomical and reliable operation of electric power system
plays a very important part in guaranteeing socioeco-
nomic development, even in safeguarding social stabil-
ity. The complexity of electric power system is deter-
mined by its characteristics about constitution, config-
uration, operation, organization, etc, which has caused
many disastrous accidents, such as the large-scale black-
out of America-Canada electric power system on Au-
gust 14, 2003, the large-scale blackout of Italy electric
power system on September 28, 2003. In this paper, based
on the real-time measurements of phasor measurement
unit (PMU) [9–12], under the influence of white Gaus-
sian noise, we used mainly nonlinear principal component
analysis theory (NLPCA) to resolve fault identification
problem in complex electrical engineering.

2 WIDE AREA MEASUREMENT SYSTEM

Phasor Measurement Units (PMU) is the remote mea-
surement devices of the Wide Area Measurement System,
which is the product of the wide application of Global Po-
sition System (GPS) in the world. The first PMU equip-
ment is born in Virginia Tech in USA by Professor Arun
G. Phadke and James S. Throp in 1980s [13]. The basic
structure and principle of PMUs is similar with that of a
computer relay, excluding the GPS receiver. By using the
synchronized clock signals from GPS, the PMUs dispers-
edly equipped in the electric network could obtain the
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Fig. 1. A simple depiction of the PMUs

Fig. 2. The typical hierarchical structure of the WAMS

Fig. 3. The geometry principle curves of NLPCA and PCA

same sampling clock. Then the corresponding input sig-

nals (consisting of voltages at buses and feeder currents)

will be sampled and converted into positive sequence

quantities (if necessary, negative and zero sequence also

can be obtained). Consequently, the operation condition

of the power system in one snapshot is to be depicted with

mutil-points synchronized phasors indicating in the same

coordinate. The refreshed rate of the synchronized pha-

sors provided by the PMUs is as frequently as one every

cycle, which also can be recommended as 25 frames/sec,

50 frames/sec or 100 frames/sec in China.

One typical structure in PMU could be represented

in Fig. 1 [13, 14]. The nodal voltage and feeder currents

analog signals are sampled and converted into the needed

sequence phasor, then the synchronized data could be

uploaded to the Phasor Data Concentrator (PDC) with
the certain refreshed rate.

Compare to the traditional measurement system such
as SCADA/EMS with Remote Terminal Unit (RTU), the
PMU/WAMS, defined as the modern measurement sys-
tem, not only could finish the functions required in the
conventional one, but also will or has brought profound
impact on state estimation, dynamic monitoring and sys-
tem protection and so on. A lot of documents have ex-
plored the wide application of WAMS and PMUs in cur-
rent or future power system.

The above mentioned PMU, PDC and communication
links are the main devices to realize the full benefit of
the PMU measurement. The architecture of the WAMS
could be divided as different levels, and in each level the
PDCs could match the time tags of data received from the
various PMUs so that the phasor data stream is created
for application, and communicated to upper levels (as well
as PMUs) [13, 14]. In this way, different level will service
for the various functions. Especially, in the researches of
the authors, the regional or central control centers will be
the appropriate target levels to implement the wide area
backup protection, which requires the phasor data from
much wider areas, even the whole system, with the longer
time delay.

A classical architecture of the WAMS/PMU could be
shown in Fig. 2.

3 NONLINEAR PRINCIPAL

COMPONENT ANALYSIS THEORY

Nonlinear principal component analysis is a novel tech-
nique for multivariate data analysis, similar to the well-
known method of principal component analysis (PCA)
[15–17]. The classic linear PCA method assumes that the
transformed features of the process are linear functions
of the observed variables. In industrial engineering, how-
ever, this assumption may not be true when the observa-
tions are from highly nonlinear processes. In such cases,
it may be more appropriate to assume that the feature
subspace is defined by nonlinear functions of the process
variables. Figure 3 presents the geometry principle curves
of NLPCA and PCA. Now let us illuminate the concrete
principle of nonlinear principal component analysis.

Suppose there are m variables ξ1, ξ2, . . . , ξm , each
variable has n components, that is {ξij}n×m . Now let
us adopt Centralized Logarithm Transformation to carry
out nonlinear principal component analysis.

First step, one transforms the original data by central-
ized logarithm transformation,

ηij = lg ξij −
1

m

m∑

t=1

lg ξit ,

(i = 1, 2, . . . , n ; j = 1, 2, . . . ,m) . (1)

Then, one can calculate the covariance matrix,

S = (sij)m×m (2)
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Fig. 4. Electric diagram of IEEE 9-Bus system

where

sij =
1

n− 1

n∑

t=1

(ηti − η̄i)(ηtj − η̄j) ,

η̄i =
1

n

n∑

t=1

ηti , η̄j =
1

n

n∑

t=1

ηtj .

(3)

Let λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 be the characteris-
tic roots of S , and t1, t2, . . . , tm be their corresponding
unitization characteristic vectors. So, the k -th nonlinear

principal component can be expressed as

Yk =

m∑

j=1

tkj lg ξkj , (k = 1, 2, . . . ,m) . (4)

Generally speaking, the k -th principal component
should satisfy t′ktk = 1, t′kti = 0, t′itk = 0 (i < k).
Therefore, we can construct an objective function

ϕk(tk, λ, ρi) = t′kStk − λ(t′ktk − 1)− 2

k−1∑

i=1

ρi(t
′

itk) . (5)

Let us differentiate it,

∂ϕk

∂tk
= 2Stk − 2λtk − 2

k−1∑

i=1

ρiti = 0 . (6)

Left multiplication t′i ,

t′iStk − λt′itk − t′i

k−1∑

i=1

ρiti = 0 , (7)

namely ρit
′

iti = 0, one can get ρi = 0 (i = 1, 2, . . . , k−1).
Then,

(S − λI)tk = 0 (8)

and
t′kStk = λ . (9)

So, the k -th principal component has been solved.

Fig. 5. Electric diagram of IEEE 39-Bus system
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Table 1. The covariance matrix of node negative sequence voltages in IEEE9-Bus system

Bus Gen1 Gen2 Gen3 Bus1 Bus2 Bus3 BusA BusB BusC

Gen1 0.004327 0.008537 0.003883 -0.01545 0.002752 0.000273 0.003435 -0.00536 -0.0024

Gen2 0.008537 0.036649 0.020056 -0.06197 0.012424 0.002112 0.016915 -0.02203 -0.01269

Gen3 0.003883 0.020056 0.014078 -0.03622 0.0071 0.001579 0.009804 -0.01313 -0.00715

Bus1 -0.01545 -0.06197 -0.03622 0.110178 -0.02152 -0.00494 -0.03107 0.039918 0.021068

Bus2 0.002752 0.012424 0.0071 -0.02152 0.004289 0.000915 0.006116 -0.00776 -0.00431

Bus3 0.000273 0.002112 0.001579 -0.00494 0.000915 0.000705 0.002136 -0.00207 -0.00071

BusA 0.003435 0.016915 0.009804 -0.03107 0.006116 0.002136 0.010159 -0.01167 -0.00582

BusB -0.00536 -0.02203 -0.01313 0.039918 -0.00776 -0.00207 -0.01167 0.014628 0.007482

BusC -0.0024 -0.01269 -0.00715 0.021068 -0.00431 -0.00071 -0.00582 0.007482 0.004536

4 FAULT IDENTIFICATION BASED ON

NLPCA IN COMPLEX POWER SYSTEM

NLPCA is used to identify and remove correlations
among objective variables as an aid to dimensionality
reduction, visualization, and exploratory data analysis.
While PCA identifies only linear correlations between
variables, NLPCA uncovers both linear and nonlinear
correlations, without restriction on the character of the
nonlinearities present in the data.

Now let us consider IEEE9-Bus system, Figure 4 is
its electric diagram. In the structure of electricity grid,
Bus-1 appears single-phase to ground fault. By BPA sim-
ulations, the vector-valued of corresponding variables is
only exported one times in each period. Considering the
influence of white Gaussian noise, suppose the standard
deviation is 0.01, and the mean error is 0. Using these
actual measurement data of corresponding node negative
sequence voltages, we will carry through nonlinear princi-
pal component analysis of fault component and non-fault
component.

4.1 Fault Identification of IEEE9-Bus system

based on node negative sequence voltage

After computing IEEE9-Bus system, we can get node
negative sequence voltages at T−1 , T0 (Fault), T1 , T2

and T3 five times. First of all, after centralized logarithm
transformation, the covariance matrix of node negative
sequence voltages in IEEE9-Bus system can be calcu-
lated, see Table 1.

In this covariance matrix, a remarkable characteristic
is present that the covariance of Bus1 is 0.110178, which
is the biggest one. So, one can analyze preliminarily that
the Bus1 is a probable fault component.

Let us solve the eigenvalues of the covariance matrix,
these results have been listed in Table 2. Finally, the first
principal component can be obtained, its expression is

Y1 = 0.103555Z1 + 0.429839Z2 + 0.250647Z3

− 0.758725Z4 + 0.149019Z5 + 0.033330Z6

+ 0.213893Z7 − 0.274438Z8 − 0.147119Z9 (10)

To sum up the above NLPCA results, although there

exists the influence of white Gaussian noise, from the

feature of the first principal component, Bus1 corresponds

with variable Z4 , and the coefficient absolute value of Z4

is 0.758725, which is also the biggest one. So, Bus1 is just

the fault component. This result is entirely identical with

the fault set in advance.

Now let us further consider a more complicated IEEE

39-Bus system, Figure 5 is its electric diagram. In the

structure of electricity grid, Bus-18 appears single-phase

to ground fault. By BPA simulations, the vector-valued

of corresponding variables is only exported one times in

each period. Considering the influence of white Gaussian

noise, suppose the standard deviation is 0.01, and the

mean error is 0. Using these actual measurement data

of corresponding variables, we will carry through nonlin-

ear principal component analysis of fault component and

non-fault component.

4.2 Fault Identification of IEEE39-Bus system

based on node negative sequence voltage

Similarly, we calculate the node negative sequence

voltages at T−1 , T0 (Fault), T1 , T2 and T3 five times. Af-

ter centralized logarithm transformation, the covariance

matrix of node negative sequence voltages in IEEE39-Bus

system can be obtained, see Table 3. In this place, we only

intercept Bus18 section.

In Table 3, a remarkable characteristic is in esse, the

covariance of Bus18 is 0.410435, which is not only the

biggest one in Table 3 (only intercept Bus18 section), but

also the biggest one in the complete covariance matrix

based on node negative sequence voltages in IEEE 39-

Bus system. So, one can analyze preliminarily that the

Bus18 is a probable fault component.

Let us further solve the eigenvalues of this covariance

matrix, see Table 4. Finally, the first principal component
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Table 3. The covariance matrix of node negative sequence voltages in IEEE39-Bus system (Only intercept Bus18 section)

Bus Bus1 Bus2 Bus3 Bus4 Bus5 Bus6 Bus7 Bus8 Bus9 Bus10
Bus18 -0.10175 -0.04901 0.134574 0.095032 0.062569 -0.04465 -0.18953 -0.07488 -0.22995 -0.0542

Bus Bus11 Bus12 Bus13 Bus14 Bus15 Bus16 Bus17 Bus18 Bus19 Bus20
Bus18 0.08282 -0.07464 -0.14773 0.231508 0.194423 0.129879 0.198885 0.410435 0.049834 -0.12922

Bus Bus21 Bus22 Bus23 Bus24 Bus25 Bus26 Bus27 Bus28 Bus29 Bus30
Bus18 0.192603 -0.09827 -0.07417 0.143789 -0.00576 0.001598 0.111723 -0.05032 -0.0396 -0.06794

Bus Bus31 Bus32 Bus33 Bus34 Bus35 Bus36 Bus37 Bus38 Bus39
Bus18 -0.05089 0.066787 -0.00325 -0.10006 -0.12987 -0.00146 -0.12064 0.014432 -0.28311

Table 2. The eigenvalues of covariance matrix in IEEE9-Bus sys-

tem

No. Eigenvalues Proportion Cumulative

1 0.191085 0.9576 0.9576

2 0.003637 0.0182 0.9758

3 0.002833 0.0142 0.9900

4 0.001993 0.0100 1.0000

Table 4. The eigenvalues of covariance matrix in IEEE39-Bus
system

No. Eigenvalues Proportion Cumulative

1 1.807145 0.6928 0.6928

2 0.352246 0.1350 0.8279

3 0.326595 0.1252 0.9531

4 0.122387 0.0469 1.0000

is obtained, which can be expressed as

Y1 = −0.124846Z1 − 0.056522Z2 + 0.159715Z3

+ 0.112571Z4 + 0.082188Z5 − 0.046110Z6 − 0.214863Z7

− 0.095761Z8− 0.270454Z9− 0.065628Z10+0.091790Z11

−0.093987Z12−0.154935Z13+0.270549Z14+0.227069Z15

+0.162749Z16+0.231255Z17+0.474260Z18+0.052699Z19

−0.136666Z20+0.220112Z21−0.121749Z22−0.090534Z23

+0.159917Z24−0.006500Z25+0.006073Z26+0.133852Z27

−0.064502Z28−0.037887Z29−0.081580Z30−0.050878Z31

+0.067623Z32−0.006795Z33−0.124308Z34−0.145257Z35

−0.000107Z36−0.139279Z37+0.020443Z38−0.343712Z39

(11)

Based on comprehensive analysis of these NLPCA re-
sults, although there exists the influence of white Gaus-
sian noise, from the feature of the first principal compo-
nent, Bus18 corresponds with variable Z18 , and the co-
efficient of Z18 is 0.474260, which is also the biggest one.
Consequently, Bus18 is just the fault component. This

conclusion is also entirely identical with the fault set in
advance.

These instances have fully proven that fault identifi-
cation of fault component and non-fault component in
complex electrical engineering can be performed by non-
linear principal component analysis and calculation. The
results of nonlinear principal component analysis are ac-
curate and reliable.

5 CONCLUSIONS

Noise is random in nature and has different attributes
depending on its origin. In most of the works on com-
munications, the transmitted data is assumed to be cor-
rupted by Gaussian noise. The Gaussian model is suc-
cessful in modeling some important random phenomena
such as thermal noise and leads to tractable equations
[18–20]. The fault is inevitable in any complex systems
engineering. In general, a fault is a deviation from the
normal behavior in the equipment or its components, and
it is a process abnormality or symptom. A system with
faults does not necessarily imply that the system is not
functioning. Detecting a fault involves identifying a char-
acteristic of the system, when a fault occurs, which can
be distinguished from other characteristics of the system.

NLPCA is a novel technique for multivariate data
analysis, similar to the PCA. In many industrial engi-
neerings, it may be more appropriate to assume that the
feature subspace is defined by nonlinear functions of the
process variables. Electric power system is essentially a
typically nonlinear system. In this paper, based on the
real-time measurements of phasor measurement unit, un-
der the influence of white Gaussian noise (suppose the
standard deviation is 0.01, and the mean error is 0), we
used mainly NLPCA to resolve fault identification prob-
lem in complex electrical engineering. The simulation re-
sults show that the fault in complex electrical engineering
is usually corresponding to the variable with the maxi-
mum absolute value coefficient in the first principal com-
ponent. These researches will have significant theoretical
value and engineering practical significance.
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