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A MULTIPLE-MODEL APPROACH FOR SYNCHRONOUS
GENERATOR NONLINEAR SYSTEM IDENTIFICATION

Seyed Salman Ahmadi — Mehdi Karrari

In this paper, a multiple model approach is proposed for the identification of synchronous generators. In the literature,
the same structure often is used for all local models. Therefore, to obtain a precise model for the operating condition of the
synchronous generator with severely nonlinear behavior, many local models are required. The proposed method determines
the complexity of local models based on complexity of behavior of the synchronous generator at different operating conditions.
There are two choices for increasing model precision at each iteration of the proposed method: (i) increasing the number of
local models in one region, or (ii) increasing local model complexity in the same region. The proposed method has been tested
on experimental data collected on a 3 kVA micro-machine. In the study, the field voltage is considered as the input and the
active output power and the terminal voltage are considered as the outputs of the synchronous generator. The proposed
method provides a more precise model with fewer parameters compared to some well known methods such as LOLIMOT

and global polynomial models.

Keywords: multiple model approach, power system identification, power system modeling, synchronous generator

1 INTRODUCTION

With the increased complexity of the interconnected
power systems, modeling of such systems has become
critical. These systems contain a large number of syn-
chronous generators. An important step in modeling of
the interconnected power systems is to obtain a valid
model of synchronous generator. Synchronous generator
is a nonlinear system. If some practical nonlinearities,
such as the magnetic saturation of the stator and rotor
iron are considered, the system shows severely nonlinear
properties.

Synchronous generator modeling can be classified into
two approaches. The first approach [1-5] assumes a
known structure for the synchronous generator and the
physical parameters are estimated. For example, a step-
by-step procedure to estimate the parameter values of the
d—q axis synchronous machine models using the standstill
Frequency response testing is presented in [1]. In [2], a
closed loop subspace parameter identification technique is
proposed to estimate Heffron-Phillips model parameters.
Such a technique is used instead of open-loop identifica-
tion to avoid bias errors in the estimated parameters.

In the second approach (synchronous generator identi-
fication) [6-8], no physical insight is used, but the struc-
ture belongs to families that are known to have good
flexibility. The structure parameters are estimated from
input-output measurements. Such a model is used either
in a predictive control structure for applications such as
on-line power system stabilizer design, or used as a sim-
ulator to test an off-line design.

Many different structures, like Volterra, Hammerstein
series [9], Hammerstein-Wiener [10], wavelet network and

neural network have been presented in the literature. In
order to model the behavior of a synchronous generator
at different operating conditions, these structures require
a huge number of parameters. Several methods such as
orthogonal projection pursuit [11], relative contribution
[12] and orthogonal least square with A-optimality design
method [13] have been developed for selecting the most
significant terms of such structures.

Another approach for modeling of synchronous gener-
ator is multiple model approach [14,15]. In such an ap-
proach, each local model shows the behavior in a region
of the synchronous generators operating space. There-
fore, to obtain a precise model for the operating region
with severely non-linear behavior, many local models are
required. In multiple model methods, depending on the
level of nonlinearity, the number of local models and the
number of terms for each local model, many parameters
need to be estimated.

In [15], multiple model approach is used to model
synchronous generator. Partitioning of operating space
is obtained using nonlinear optimization. After each it-
eration of nonlinear optimization, all local linear mod-
els parameters are estimated by global learning. There-
fore, the model loses the local interpretability. In multiple
model structures using global learning the behavior of lo-
cal models may not change smoothly as a function of the
operating region. The use of such non smooth models can
lead to unreliable control.

The parameters of local models are usually estimated
by global or local learning algorithm. The local learning
is faster than global learning. The local learning leads to
local interpretability which means that the local models
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reflect the process behavior at the corresponding operat-
ing region, but such property is not satisfied by global
learning. The number of effective parameters in model is
less with local learning than with global learning (see [16]
and references therein).

Therefore, the parameters are estimated by local learn-
ing algorithm in the proposed method. In this paper, an
effort is made to present a new method combining the ad-
vantages of both non-linear identification methods. This
new method uses the multiple model structure. Where
necessary, use local polynomial model instead of local lin-
ear model. In the proposed method, global model can be
obtained with fewer local models. Contrary to the above-
mentioned methods, in the proposed method, not only
the number of local models is increased, but there are
two choices for model increased precision: (1) Increase in
the number of local models in one region, and (2) increase
in local model complexity in the same region. The local
models complexity is, therefore, different at different op-
erating regions. In the proposed method, the iteration of
algorithm may not result in a new local model but in the
increased complexity of one of the local models.

In Section 2, the formulation of the multiple model ap-
proach is described. In Section 3 the proposed algorithm
is presented. Experimental setup and data collection on
a micro-machine are discussed in Section 4. In Section 5
the proposed method is applied on the experimental data
of the micro-machine, and compared with other methods.
Section 6 concludes the paper.

2 THE MULTIPLE MODEL APPROACH

In this approach, a global model is given by the combi-
nation of the local models, which have been identified over
different operating conditions of the synchronous genera-
tor. In these methods, global output (k) is equal to the
weighted sum of M local models y;(k), i = 1,..., M,
that is

M
(k) = > yi(k)®; (2(k)) (1)
i=1
with y;(k) = fi(ei(k),0;), where ¢(-) and ; are the re-
gression and parameter vectors, respectively, and z(k) =
[zl(k), - (k)] T is the operating space vector. The va-
lidity function ®;(z(k)) describes the contribution of the

i-th local model to the output. Usually, the validity func-
tion ®;(z(k)) is defined as

pi(z(k), ci, d;)
Ly pi(2(k), ¢, d;)

b, (Z(k)): (2)

where p;(-) are often chosen to be multi-dimensional
. . T
Gaussian functions and ¢; = [ci,l,ci,g, .. ] and

d;, = [diyl,diﬁg,...,dm]T are, respectively, the centre
and the standard deviation of multi-dimensional Gaus-
sian function. In other words, global output is obtained

. ;Ci,q

by the average of the local model outputs y; (k) weighted
by local model validity function.

The local models f;(-, ) used are linear in parameters.
The ¢;(-) and z(k) can be chosen independently. These
vectors can be composed of previous model output and
input.

The partitioning strategy of the operating space de-
termines the validity functions parameters. If no a pri-
ori knowledge can be utilized for the partitioning of the
operating space, either a grid partition or a data-driven
method has to be chosen. An overview of existing parti-
tioning strategies is given in [16].

In this paper, the partitioning of operating space is not
assumed to be known a priori. The proposed method de-
termines the most significant local models terms. Also the
local model orders can be determined. The local models
and validity functions parameters are estimated by linear
optimization.

3 THE PROPOSED METHOD

Assuming a set of input output data is available; first
a global model is fitted to the available input-output
dataset {y(k),u(k)}1_, where y(k) and u(k) are output
and input measurements, respectively. Next, the system
operating space is split into two halves along all dimen-
sions of operating space. For each division, a local model
is considered, that is,
y(k) = y1(k)@1(2(k)) +y2(k) @2 (2(k)) - (3)
The local models used are quadratic polynomial. The
parameters of the two local models are estimated such
that the two models local weighted least squares are min-

imized together. The local weighted least squares are as
follow

Ji = Z ®;(2(k)) (y(k) —vi(k))

k=1

where Q; = diag(®;(z(1)), ®;(2(2)),...,®;(z(N))).
The local weighted least squares (ie Jy, J2) are com-
bined to one

J=JD+Jo=(Liy — Liy1) (Liy — Liy1)
+ (Loy — Loys) " (Lay — Loys) =

({Lly] ~ { LU oNXnDTQLly] ~ { LU oNXn}
Loy Onxn L2U Loy Onxn L2U 5)

In equation (5), @;, ¢ = 1,2 is decomposed into Q; =
L:Li where L; is an upper triangular matrix with posi-
tive diagonal elements and y; = U6;, the memory matrix
U is composed of candidate regressors.
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Fig. 1. Experimental setup for the micro-machine

Now an orthogonal least squares with A-optimality al-
gorithm is used in order to determine the most significant
terms and to estimate the local models parameters, y; (k)
and ya(k). See the Appendix for more details of the Or-
thogonal Least Squares with A-optimality algorithm.

If all chosen terms correspond only to one of the two
local models (for example, y1(k)), the other model along
with the corresponding membership function can be elim-
inated. In such a case it is recommended the orthogonal
least squares with A-optimality method be implemented
once more to determine the most significant terms of

ynew(k) = yl(k) 1€

J=J = (.Y*.Yl)TQ(Y -y1)=
(Ly — LU6,) ' (Ly — LU6:) (6)

where @ is the validity function corresponding to the
worst model. The matrix @ is decomposed into @ =
LTL,where L is an upper triangular matrix with positive
diagonal elements.

With the above-mentioned method, new local models
are obtained for all operating dimension m = 1,...,q.
Among all partitions, the partition with the smallest out-
put error is chosen. Then, the local loss functions for
each local model (S;, 7 = 1,...,nl where nl denotes
the number of local models) are computed by weighting
the squared model errors with the corresponding value of
validity function

N
S; = Zcpj (z(k)) (y(k) —

k=1

Next the local model with the maximum local loss
function is chosen. Now the algorithm is repeated with
regard to the operating region of the chosen local model.
The proposed algorithm is outlined below:

1. Identify a global model using the orthogonal least
squares with A-optimality algorithm.

2. Calculate the local loss function in (7) for all local
models. Choose the worst local model with the highest
local loss function.

3. Split the rectangle of the worst local model into
two halves with an axis-orthogonal split. Try divisions
in all dimensions. Carry out the following steps for each
division:

3a. Construct membership functions p;(-) for both
rectangles. The centers of these membership functions
are the centers of the rectangles. The standard deviation
in each dimension is calculated as o, = kA,,, where
A,, is the width of the rectangle in the dimension m =
1,2,...,q and k a factor which is chosen a priori, This
parameter determines a smooth transition between local
models.

3b. Construct all validity functions.

3c. Using (5) and the orthogonal least squares with A-
optimality algorithm determine a number of y;(k) and
y2(k) terms as most significant terms and estimate their
parameters.

3c-1. If all the chosen terms are only corresponding to
one of the two local models, implement the orthogonal
least squares with A-optimality method for (6).

3d. Calculate the sum of square errors for the global
model (global loss functions).

4. Among all divisions constructed in step 3, select the
one with the smallest global loss function.

5. Check the termination criterion: if satisfied, algo-
rithm is stopped. Otherwise go to step 2.

In the proposed algorithm, the significant terms of
both local models in one dimension are estimated to-
gether. In this method, it is decided which of the two se-
lections is better to achieve a more precise model: Increas-
ing the number of local models (if the selected parameters
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Fig. 4. Performance of LOLIMOT and the proposed algorithm for
electrical power on the validation data

belong to both or regions), or increasing the number of
terms (if the selected parameters belong to one of the
regions). However, in LOLIMOT algorithm [16], a local
linear model is identified for both partitions. The com-
plexity of both identified models is the same. Since there
is the possibility that there may not be sufficient data

in one of these regions, the resulting model will not be
precise. This problem is solved in the proposed method.

4 EXPERIMENT ON
SYNCHRONOUS GENERATOR

The system under consideration is a 3 kVA, 208 V, 3
phase micro-machine, driven by a DC motor. The micro
machine can represent dynamic response of much larger
synchronous machines when the parameters and variables
are considered in a normalized version (per unit system
[17]). The main problem with a micro-machine can be the
field time constant, which is much lower than that of the
larger machines. This problem has been overcome using
a time constant regulator, which is used to increase the
effective field time constant to match that of the larger
units.

The experimental setup used for the experiment is
shown in Fig. 1. The synchronous generator is driven by
a DC motor. The exciter input signal is applied to the
synchronous machine through a D/A converter. The field
voltage, terminal voltage (v¢) and the electrical power
(P) are measured and sampled by the data acquisition
system. The machine is connected to a constant voltage
bus by a double circuit transmission line modeled by
lumped elements. Each circuit consists of six 7 sections
and simulates the performance of a 300 km long 500 kV
transmission line.

The sampling time was selected to be 50 ms. This
sampling time proved to be fast enough to capture the
required dynamics.

A pseudo random binary sequence (PRBS) signal with
25 % of the nominal value was applied. The initial operat-
ing condition was selected to be P = 1.2 pu, @ = 0.72 pu,
vy = 1.31 pu.

The field voltage, electrical power and terminal voltage
measured are shown in Fig. 2.

5 SIMULATION RESULTS

In this section, the number of effective parameters and
the precision of the proposed algorithm for the experi-
mental results (in Section 4), are compared with other
methods.

The number of effective parameters of global quadratic
model is considered to be equal to the number of global
model’s parameters. In local learning, the number of ef-
fective parameters is given by [16]

nl  nl

n=>>"3"t(QUiU] Q:U)~'U; Qs

i=1 j=1

x QU (U] Q;U;)"'U/ Q;)  (8)

where tr(A) denotes the trace of a matrix A and U;, the
memory matrix, corresponds to the i-th local model.
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Table 1. Results for terminal voltage

The proposed

model LOLIMOT method

n 37 12

Number of local models 12 2
NRMSE 0.3296 0.2948

Table 2. Results for electrical power

The proposed

model LOLIMOT method

n 55 14

Number of local models 20 3
NRMSE 0.6251 0.5819

The models are trained using the first 500 samples of
the input-output data set and tested with the remain-
ing 500 samples. The order of local models is considered
to be equal three. In this study, the input is the sam-
pled field voltage and the outputs are the sampled ter-
minal voltage and electrical power. The operating space
for LOLIMOT and the proposed algorithm is chosen as
2(k) = [u(k —1),y(k — 1)]T. The validation capability
and accuracy of different methods could be evaluated us-
ing the Normalized Root Mean Square Error (NRMSE).

Now that the system under study and the criteria
for comparison are explained, the proposed identification
is applied on the system and compared with a global
quadratic model and LOLIMOT methods. First the main
design points for each approach are explained:

Global quadratic model: To select the most significant
model terms and estimate the model parameters simulta-
neously, the orthogonal least squares with A-optimality
algorithm is used. The results of LOLIMOT and the pro-
posed algorithms are by far better than that provided
by global quadratic model. Therefore, the efficiency of
the proposed identification method and the LOLIMOT
method is discussed.

LOLIMOT algorithm: In continuous iteration
of LOLIMOT algorithm, identified models are tested.
The proposed algorithm: This method with o = 1076
is applied for electrical power and terminal voltage. The
identified models are validated in various iterations.

The model output for terminal voltage and electrical
power over the validation data identified by LOLIMOT
and the proposed algorithms are shown in Figs. 3 and 4,
respectively.

The identification results of LOLIMOT and the pro-
posed algorithm for terminal voltage and electrical power
are summarized in Tabs. 1 and 2, respectively.

It can be followed from Tabs. 1 and 2 that the proposed
algorithm yields a model with a more reduced number of
effective parameters and better validation performance.
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6 CONCLUSIONS

Nonlinear identification of a synchronous machine us-
ing multiple model structure is described in this paper.
In the proposed identification algorithm, neither the com-
plex global structure nor multiple model structure with
a high number of local models are used. Instead, the ad-
vantages of both methods are combined together to iden-
tify a model with fewer number of effective parameters
and fewer local models. The proposed method uses lo-
cal polynomial (or linear) models for complex (or simple)
operating regions.

To obtain a more precise model, at each iteration, a
choice is made between increasing the number of opti-
mal local models or increasing the complexity of each
local model. By this method, each local model order also
is determined. The proposed method has been verified
by studies using actual data obtained on a physical syn-
chronous machine and performed much better than pre-
vious algorithms with fewer parameters.

In this paper, terminal voltage and the active power
are considered as the outputs of the system and the field
voltage as the input of the system. Experimental results
show that the proposed method can provide a more pre-
cise model with fewer parameters. The obtained model
can be used for system analysis and controller design,
and is planned to be used for designing a power system
stabilizer (PSS) in a predictive on-line control structure.

Appendix — The Orthogonal Least Squares
with A-optimality algorithm

A linear-in-parameters model can be formulated as

n

y(k) =Y 0i(k)pi(k) +e(k), i=1,2,...,N

i=1

(9)

where ¢;(k), i = 1,2,...,n are all candidate model
terms, e(k) is an uncorrelated model residual sequence
with zero mean and variance of o2 and 6;, i =1,2,....,n
are the unknown parameters to be estimated.

Equation (9) can be represented in matrix form as

y=UO+E (10)
where y = [y(1),-..,y(MIT, U =[g1,- ., o,
$i = [(pz(l),7¢1(N)]T, 0= [91,...,9n]T,
E=le(1),...,e(N)]T.

An orthogonal decomposition of U is

U=PA (11)
where A is an n X n unit upper triangular matrix and
P is an N x n matrix with orthogonal columns p; such
that

(12)

PP = diag{p{ p1,p3 p2, -, PpPn}
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so that (10) can be expressed as
y=PA9+E=P¢° +E. (13)

The orthogonal least squares solution 6° can be esti-

mated from 8° = (PTP)"'PTy or 62 = p p . The
original parameters 6 can be estimated from
A =06°. (14)
The mean squares error (J) is computed as
1 L 1
J= T 0°'p p= —y y—
Ny y N — (3 pz p’L Ny y
(15)
N ; p; pi

To enhance model robustness, (15) is used with A-
optimality criterion. Such a criterion is defined as

mm{tr [cov 6] = o° Z

— p; pi

1 (16)

Equation (15) and A-optimality are augmented as

J—iny NZ Z

=1
where positive number a regulates the tradeoff between
model approximation ability and robustness. Note that
the net contribution of each term p; can be computed
. 2
independently as (py)"/Np;/pi+aX;_,1/p/ pi.
Equation (17) can be expressed as

p; pi p/p {17)
i Pi

JO — jG-1) _

1 1
(pz y)? ta

. (18)
N pp p; pi

At the i-th iteration, a candidate term is selected as i-th
term if it produces the smallest J(® [13]. The selection
procedure is terminated if J® +1) > j(»n%)

The identified model is expressed as

- ie;(k) +e(k

The model output is represented by means of the non-
orthogonal model terms

), k=1,....,N. (19

nO
= Ze’)’i(p’)’i(k) + e(k) )
i=1
k=1,...,N, v ={1,...,n} (20)
where the parameters 6 = [6,,,6,,,.. .,9%0]1— can be
calculated from (14). {71, Yo, ... ,vno} is the index set of

non-zero components of 8 where 6.,
nent in the parameter vector 6.

is the ~;-th compo-
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