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A WIDE RANGE ROBUST PSS DESIGN BASED
ON POWER SYSTEM POLE-PLACEMENT
USING LINEAR MATRIX INEQUALITY

Mohammad Ataei — Rahmat-Allah Hooshmand
— Moein Parastegari *

In this paper, a new method for robust PSS design based on the power system pole placement is presented. In this
stabilizer, a feedback gain matrix is used as a controller. The controller design is proposed by formulating the problem of
robust stability in a Linear Matrix Inequality (LMI) form. Then, the feedback gain matrix is designed based on the desired
region of the closed loop system poles. This stabilizer shifts the poles of the power system in different operational points
into the desired regions in s-plane, such that the response of the power system will have proper damping ratio in all the
operational points. The uncertainties of the power system parameters are also considered in this robust technique. Finally,
in order to show the advantages of the proposed method in comparison with conventional PSS, some simulation results are
provided for a power system case study in different operational points.
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1 INTRODUCTION

The dynamic stability is one of the most important
problems in the power system which can be studied by
using nonlinear model of the power system. The nonlin-
ear model of the system includes a series of nonlinear
complicated equations. These nonlinear equations can be
linearized around each operating point, such that small
signal model of the power system can be determined. The
Hefferon-Philips model is one of these power system lin-
ear models [1-19]. The studies on linear system show that
the system response has not enough damping ratio and
it might be unstable in some operating points [1-8]. In
order to increase the damping of the power system re-
sponse, classical controllers can be used which are usually
designed for an operating point. If a phase lead transfer
function is used in control mechanism, a conventional PSS
is achieved [1-19]. Since the PSS is designed for one opera-
tional point, it has good performance only in the designed
operating condition and it should be redesigned to achieve
good performance in the other operational points. There-
fore, the desired PSS should stabilize the power system
in all operational points; ie, it should be robust against
the changes in the operational conditions.

Adaptive control [3] and robust control strategies [4—
15] are two main methods for solving this problem in
power system which have been led to adaptive PSS and
robust PSS designs respectively. Since in adaptive PSS,
an identification mechanism is required to adapt the PSS
parameters, the complexity of online controller compu-
tations will increase [3]. In contrast, in the robust PSS,

a fixed controller for different operational points is de-
signed [4-15] which makes it more convenient than adap-
tive PSS.

In the field of robust PSS, different methods based
on the H* control theory [5-15] and the Quantitative
Feedback Theory (QFT) [4] can be used to design a ro-
bust stabilizer, however, the QFT based robust PSS is
less used because of difficulties due to its trial and er-
ror nature [4]. On the other hand, H* based methods
mostly guarantee the system stability and dont ensure
any other constraint on system response [9-14]. There-
fore, H*>° method can be combined with other methods
to improve performance of the PSS [5-8]. Some of these
desirable methods are combination of H* and Hs [5,19]
or combination of H* and Pole-Placement methods [6—
7]. In these combined methods, the design problem can
be converted to a LMI problem, whose solving determines
the stabilizer parameters [4-19].

One important issue in robust PSS design is the
achievement of wide range of stability. However, this
matter has not been considered in some previous studies
[8,10,16,17]. Moreover, unlike the methods presented in
references [12, 18], simplified model cannot be used for
power system simulations. In order to achieve desirable
power system response, closed loop poles should be placed
in specific zone. Although in references [5,19] combined
H> and Hs methods are used, but this zonal constraint
is not considered. Therefore, an important goal of this
paper is to consider the above mentioned characteristics
simultaneously.

On the other hand, for designing robust PSS, usually a
robust strategy is used to determine lead transfer function
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Fig. 1. Single machine infinite bus system

parameters [5, 13], or feedback gains [7]. If a lead transfer
function is used as a controller, long settling time of power
system response is achieved which is not desirable. In this
regard in references [5,13], although the combined H®°
and pole placement methods has been used to achieve
wide range performance by solving LMI problem, but
they use lead transfer function which has caused long
transient response time.

Considering the above mentioned constraints, in this
paper desig of a robust PSS based on the power system
pole placement is proposed in which a feedback gain ma-
trix is used as a controller. For this purpose, combined
robust and pole placement problem is formulated as a
LMI problem whose by solving, the controller parame-
ters are determined. Also in this method, parameter un-
certainty is concluded in matrix elements by considering
huge number of operational points. In addition, this prob-
lem is solved such that wide range stability and short
settling time is achieved simultaneously. Moreover, it can
be seen that power system remains stable in emergency
condition, i.e. in the operational points which is not con-
sidered in range of usual operating points. In order to
show the advantages of the proposed method, some sim-
ulation results are provided for a power system case study
in different operational points. It should be noted that for
solving the obtained LMI problem, the MATLAB pack-
age is used and there are some numerical methods to solve
the LMI problem by MATLAB [21].

The remainder of this paper is organized as follows. In
Section 2, the model of the power system with uncertainty
is studied. The LMI problem and its usage in robust
control design are reviewed in Section 3. In Section 4
by combining robust power system stabilizer with pole
placement technique, an LMI problem is obtained. The
results of applying the proposed approach to a power
system is reported and analyzed in Section 5. Finally,
some remarkable properties of the proposed method and
concluding remarks are explained in the last section.
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Fig. 2. The linearized model of the synchronous generator in operating
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2 THE POWER SYSTEM
MODEL WITH UNCERTAINTY

The power system is a nonlinear system; therefore to
study the small signal stability, the equations around each
operating point can be linearized. On the other hand,
when a single generator is connected to the infinite bus,
active power (P), reactive power (@) and transmission
line impedance between generator and infinite bus (X,)
determine power system operating point. The power sys-
tem linearized model can be used to determine the sys-
tem eigenvalues. Fig. 1 shows a single line schematic dia-
gram of a single machine infinite bus system. The genera-
tor is fitted with an Automatic Voltage Regulator (AVR)
and a static excitation system. Neglecting the stator tran-
sients and the effect of damper windings, the generator
and exciter can be modeled as a 4th order system. This
power system with regulator and exciter linearized model
is named Hefferon Philips model which is shown in Fig.
2. In this figure, values of the K; to Kg, Ka, T4 and
T}, should be determined. The values of K4, T4 and
T}, are the synchronous generator parameters, which are
constant for each synchronous generator. On the other
hand, changes in the operating point (active power (P),
reactive power (Q) and transmission line impedance be-
tween generator and infinite bus (X.)) changes K; to
K¢ values. This model is a 4th order model, so it has 4
state variables. The state space equations of this model
are shown in the following equation.

(t) = Ax(t) + Bul(t), (1)
y=Ca(t). (2)

where X(t) = [AS() Aw(t) AE(t) AVep(t)]'
is the state vector, y is the output signal, Aw(t) is se-
lected as the system output, and A is the state space
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matrix where its elements are function of the loading con-
ditions, B and C' are

0.0 2xf 0.0 0.0
e
A=| _Ki 00 ——1_ 1 |, (3)
T, ' KTy, T,
e 00 R
BT =100 0.0 00 %/, (4)
C=[00 1 00 0.0]. (5)

The under study system specifications are provided in
Appendix A. The operating condition for this system is
completely defined by the values of the real power, P,
the reactive power, (), at the generator terminals and
the transmission line impedance, X, . Values of P, ) and
X, , are assumed to vary independently over the following
ranges: 0.2 < X, < 0.7, -02<@Q <05, 04<P<
1. Changes in the operational point (P, @ and X, ) leads
to changes in the elements of the A matrix and it leads to
changes in the linearized model eigenvalues. Fig. 3 shows
the open loop poles for this family of plants with P,
@ and X., varied over the specified range by steps of
0.05. This step distance makes a set of operational points
with 1900 different members, which contains most of the
operating conditions of the power system. Most of these
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operational points don’t have adequate damping. So it
is required to design a stabilizer which places the rotor
mode eigenvalues inside the acceptable region as is shown
in Fig. 4.

3 LMI BASED ROBUST PSS DESIGN

In this section, after introducing some background ma-
terials, describing the overall H,, based state feedback
design with pole placement in terms of LMI problem [22]
which is used in the proposed method in Section 4 is pre-
sented.

3.1 Background Materials

This subsection discusses an LMI-based characteriza-
tion for a wide class of pole clustering regions as well as
an extended Lyapunov theorem for such regions. An in-
teresting region for control purposes can be described by
the set S(a,r,0) of complex numbers x + jy such that

r<—a<0, |[z+jyl<r, xtanf < —|y|. (6)

Locating the closed-loop poles of the system in this region
ensures desired performance. Let D be a sub-region of
the complex left-half plane. A dynamical system & = Az
is called D-stable if all eigenvalues of the matrix A lie
in D.When D is the entire left-half plane, this notion
reduces to asymptotic stability, which is characterized in
LMI terms by the Lyapunov theorem, ie A is stable if
and only if there exists a symmetric matrix X satisfying

AX+XAT <0, X>0. (7)

This Lyapunov characterization of stability has been ex-
tended to a variety of regions [22]. These regions are poly-
nomial regions of the following form

D= {z cC: Z ez’ < 0} (8)

0<k,I<m

where the coefficients cg; are real and satisfy cp; = ¢ .
For polynomial regions, matrix A is D-stable if and only
if there exists a symmetric matrix X such that

S enA*X(AT)'<0, X >o0. 9)
k,l

To have the ability of synthesizing the problem in the
LMI framework, it is necessary to use conditions that are
affine in the state matrix A, such as the Lyapunov sta-
bility condition (7). Moreover, defining the LMI regions
as follows is suitable for LMI-based synthesis. Hereafter,
® denotes the Kronecker product of matrices, and the
notation M = [pri]1<k,i<m means that M is an m x m
matrix (block matrix) with generic entry (block) g .
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DEFINITION. A subset D of the complex plane is called
an LMI region if there exist a symmetric matrix o €
[a] € R™*™ and a matrix 8 € [B € R™*™ such that

D={zeC: fp(z) <0}. (10)

fp(z)=a+z8+ z8T = o + Briz + Bz (11)

The pole location in a given LMI region can be charac-
terized in terms of the following m x m block matrix

Mp(A,X)=a®X+8®(AX)+ 8T (AX)" =
[ X + B AX + Bu XA 1<k i<m - (12)

THEOREM. The matrix A is D-stable if and only if there
exists a symmetric matrix X such that

Mp(A, X)<0, X>0. (13)

Now, consider the region S(r,a,6) as defined in (8)

with @ = r = 0. The eigenvalues of A lie in the sector

S5(0,0,0) if and only if there exists a positive definite

matrix P such that

(W@AP+PWoA' <0 (14)

cos @

sin 6

sin 6

where W = <
—cos b

). On the other hand,

S5(0,0,0) is an LMI region with characteristic function

sinf(z + 2)
—cosb(z — z)

ot = )

(15)

A has its poles in S(0,0,0) if and only if there exists
X > 0 such that

cosf(AX — AXT)

sinf@(AX + AXT)
( Sinf(AX + AXT) ) <0 {6

cosf(XAT — AX)
or equivalently
(W @ A) Diag(X, X) + Diag(X, X)(W® A)T <0. (17)

In comparison with relation (14), this last condition gives
additional information on the structure of P. It is also
more suitable since the number of optimization variables
is divided by four when replacing P by Diag(X, X).

3.2 H. Based State-Feedback Design with Pole
Placement

This subsection discusses state-feedback synthesis with
H,, performance and pole assignment specifications.
Here, the closed-loop poles are required to lie in some
LMI region D contained in the left-half plane. Results
are first derived in the nominal case and then extended
to uncertain systems.
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Consider a linear time-invariant (LTI) system de-
scribed by

(t) = Az(t) + Biw(t),

Zoo (1) = Cooz(t) + Docr(t) (18)

and let T, ,__(s) denote the closed-loop transfer function
from w to zo under state-feedback control v = kx. The
constrained H., problem is to find a state-feedback gain
K that:

e places the closed-loop poles in some LMI stability re-
gion D with characteristic function (11);
e guarantees the H,, performance HTW ZooHoo <.
Let (Aer, Bet, Ceioo, Deioo) denote realizations of T, . .
From mentioned theorem in Section 3.1 the pole-place-

ment constraint is satisfied if and only if there exists
Xp > 0 such that

[0 XD + BriAaXp + BuXpAY] L<hicm < 0. (19)

Meanwhile, the H,, constraint is equivalent to the exis-
tence of a solution X, > 0 for the following LMI:

Acl Xoo Bcl Xoo CJOO
B}, —I D). |<o0. (20)
CelooXoo  Deioo _721

This result is known as the Bounded Real Lemma.

Our goal is to determine state feedback gains K that
satisfies the H,, and pole constraints. From the previ-
ous discussion, this is equivalent to satisfy (19), (20).
While this problem is not jointly convex in the variables
(Xp,X,Y, K), convexity can be enforced by finding a
common solution

X=Xp=X.>0. (21)

Consequently LMI constraints can be summarized as the
following inequalities

[ X + BuU(X, L)+ BuU(X,L)T] <0, (22)
UX,L)+UX,L)" B, V(X,L)T
By -1 DI, <0 (23)
V(X,L) Do1  —72I
UX,L):=AX, V(X,L):=CyxX. (24)

In this stage, LMI optimization software such as the
MATLAB LMI Control Toolbox can be used to solve the
problem.
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4 THE PROPOSED WIDE RANGE
ROBUST PSS BY USING LMI

4.1 Design Objectives

The Power system eigenvalues which show the relative
stability of the system are determined by its linearized
model. These eigenvalues have not enough damping to
stabilize power system response. It should be noted that
in power systems, a damping factor, ¢, of at least 10 %
and a real part, o, not greater than —0.5 for the trou-
blesome low frequency electromechanical mode, guaran-
tees that the excited low frequency oscillations will damp
down in a reasonably short time. Such restriction on all
the system eigenvalues would imply that all the poles of
the system lie in the left of the imaginary axis in a D
shape contour. This D shape contour is shown in Fig. 4.
If a power system has above specifications, low frequency
oscillations will damp after a short time. However, a real
power system has not such a good structure and all of
its poles have not enough damping and might be un-
stable. To stabilize the power system response, feedback
controllers are used. The feedback gains should be de-
termined such that the closed loop eigenvalues shift to
the D shape region. These feedback gains should also be
small enough to prevent controllers saturation.

On the other hand, in this paper our goal is finding
the feedback gains such that it guarantees stable power
system response in spite of changes in operational point.
A robust controller and a well damped response is ob-
tained in a wide range of operating points, if proposed
method guarantees acceptable small signal transient in
all operational points.

For this purpose, the robust controller design prob-
lem is converted to a LMI problem. Thus, solving the
LMI problem leads to robust power system stabilizer. To
accomplish this, at first, system uncertainties should be
studied in the state space equations.

4.2 Representing the uncertainty in the power
system model

Dynamical behavior of a system can be described by
state space equations. These state space equations con-
sist of power system parameters which are not constant.
Therefore, the system should be determined by an uncer-
tain state space model.

The state space equations of the uncertain system can
be considered as follows

Ei = Axz(t) + Bu(t),
y(t) = Cx(t) + Du(t).

(25)
(26)

where the matrices A, B, C, D, E depend on uncertain
parameters which vary in some bounded sets. The matrix
elements boundaries can be determined in n operating
points. Therefore changes in the operating point leads to
changes in the state space equations.
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In the resultant, considering the uncertain elements
of each uncertain matrix, the matrices A and B can be
considered as the following form

N N N
(A,B) € {(ZPz‘Am ZpiBz’)3 dpi=1,pi> 0}-
i=1 i=1 i=1

(27)
Such polytopic models may be resulted from convex inter-
polation of a set of models (A, B) identified in different
operating points. They also arise in connection with affine
parameter dependent models as

&= A(p)x + B(p)u. (28)

where p is a vector of real uncertain parameters and
A(p), B(p) are affine matrix-valued functions of p.

The uncertain matrix A of the under study power
system based on the presented model in Section 2 is as
follows

0.0 a2 0.0 0.0
a1 a2 a3 0.0

A= , 29
asi 0.0 ass a34 ( )
ag1 0.0 as3 ass

The system matrix A(k) is affinely dependent on k, ie
A(k) can be rewritten in the following form

Ag+ag1 A1 +azzAs+asi As+aszAs+as1 As+assAs (30)

where Ay, A1, Ao, Az, As; and Ag are constant ma-
trices. Under different loading conditions each parameter
varies within a certain range as:

azn € [aglvag_l]v azs € [a2_3aa;_3]a az1 € [a?jlaag_l]a
ass € [ag,ags], an € [ag,ap] and ass € lag, aj]
where a; and a;rj denotes the lower and upper bound
of the parameter a;; respectively for all P € [P~, P*],
Q € [Q,Q"] and z. € [z_,zS]. These bounds can
be calculated using any standard optimization tech-
nique. This affine parameter-dependent model can be
converted to a polytopic model. The parameter vector
a1 a3 as1 asz asq as3] € RO takes values in a
parameter-box with 2° = 32 corners

T
B P T S S
keor1 = [%1 Qg3 @31 QGz3 Gy a43] )
T
(ot g gt ot ot oF
kcor2 - [a21 Qg3 Q31 Qg3 Ay a43] ’
(31)
k . o _ _ _ _ _ 1T
cor32 = [agl Qg3 Qg1 Qgz Ay a43]

Since A(k) is affine in k, it maps this parameter box to
a polytope of matrices with 32 vertices defined at each
parameter box corner.
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4.3 Design Procedure

By considering above uncertainty description, feed-
back gains should be determined such that the power
system eigenvalues places in the desirable D region. It
should be noted that an unnecessarily large shift of the
system poles into the left half plane should be avoided,
since this may lead to large feedback gains. Therefore,
imposition of constraints enforces the closed loop poles
to a D shape region specified with 6 < 45° and —50 <
o < —0.5. In the other word, the open loop poles of the
whole family of plants should be shifted to this region.

In Section 3 the issue of converting the state feedback
design to an LMI problem was discussed. These results
can be extended for uncertain systems [22]. For brevity,
in the following only converting the pole placement prob-
lem by considering the uncertainty description of Sub-
section 4.2 is discussed. Thus, solving the resultant LMI
problem leads to design of feedback gains, which is ro-
bust against changes in the P, @ and X.. Consequently,
the power system eigenvalues are forced into the D shape
region in the left half plane.

Consider the problem of computing a state feedback
gain K that forces the closed-loop eigenvalues into some
LMI region D for all admissible values of A and B.
The equation (25) is called quadratically D-stabilizable
if there exists a gain K and a single Lyapunov matrix
X > 0 such that Mp(A+ BK, X) < 0 for all admissible
values of A and B. In the continue, it is shown that this
condition is also necessary, and the results are extended
to arbitrary LMI regions.

Let D be any LMI region, suppose that (25) is
quadratically D-stabilizable with Lyapunov matrix X
and state-feedback gain K, and let L := KX . By con-
sidering the condition Mp(A+BK, X) < 0 at each vertex
(A;, B;) of (27), the following necessary conditions on X,
L are achieved

[ X + Bri(AiX + BiL) + Bix(A; X + B;L) "T]i; < 0
fori=1,...,N, (32)

X>0. (33)

Conversely, it can be seen that any solution (L, X) of this
LMI system satisfies Mp(A+ BK, X) < 0 when forming
the weighted sum of the LMIs (32) with nonnegative coef-
ficients p1,...,pn . Hence, the relations (32) and (33) are
necessary and sufficient for quadratic D-stabilizability.
Note that LMI conditions for quadratic H,, performance
over (27) are obtained similarly by writing (22), (23) at
each vertex of the polytopic plant.

Now, it is proposed to apply a full state feedback
controller using the described LMI based approach for
achieving the robust D-stability requirement. Each state
is measured, multiplied by the appropriate gain and then
summed up before being fed at the reference input of the
Automatic Voltage Regulator. In a practical implemen-
tation, additional hardware would be required for state
measurements. For the 4th order model used here, the
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states are the deviations in the load angle ¢§, rotor speed
w, field voltage Eyqs and the internal voltage Ej. The
values of 0, w and E¢q can be directly measured us-
ing appropriate transducers. The internal voltage E; can
be computed from the instantaneous values of the stator
currents and the equivalent circuit parameters. A poly-
topic system is obtained for this set by choosing the A
and B matrices corresponding to the external values of
P, @ and X, as stated in Subsection 4.2. All possible
combinations of the minimum and maximum values of
each of these 3 parameters are taken to generate a set
of 8 vertex systems corresponding to the 8 corners of a
cube in the space with P, () and X, coordinates. Since
the point with minimum @ and maximum P and X,,
did not have a steady state load flow solution, it was re-
placed by a nearby feasible point as P = 1.0, Q = —0.2,
X =045.

5 SIMULATION RESULTS
5.1 Under study system

In order to investigate the performance of the pro-
posed method, it is used to stabilize low frequency oscil-
lations of a generator connected to the infinite bus which
is shown in Fig. 1. The Power system linearized model,
Hefferon-Philips model, is shown in Fig. 2. The parame-
ters of the under study synchronous generator connected
to infinite bus are provided in Appendix A. To exam-
ine the robustness of the proposed method, this system
is studied in three different operating conditions. These
operating points are specified as follow:

First operating point.

Q=055,P=08, X, =04,

{ K, =097, K3 =0.97, K3 =0.36, (34)
Ky=124, K5 =—-0.05, K¢ =0.46.
Second operating point.
pf=082, P=12, X, =0.6,
{ K, =175, Ky =1.1145, K3 = 0.4182, (35)
Ky =142, K5—-0.19, Kg = 0.5459.
Third operating point.
Q=05,P=1, X, =07,
(36)

K1 =097, Ky =0.96, K3 = 0.42,
Ky=1.228, K5 = —0.12, K¢ = 0.536.

By considering @@ = 0.55 pu in (34) and P = 1.2 pu
in (35), it is seen that the first and second operating
points are even out of the predefined operating ranges
02<X.<07, -02<@Q<05,04<P<1.

Also, by considering (36), it is concluded that the third
operating point is at the corner of the conventional oper-
ating conditions.
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Fig. 7. Closed loop poles with the proposed state feedback con-
troller for D shape region pole placement

The performance of the proposed method in three dif-
ferent operating points is compared with conventional
PSS to illustrate the proposed method robustness and
desirable dynamic performance. For this purpose, open
loop responses of the power system (Aw(t)) for these op-
erating points are shown in Figs. 5 and 6.

5.2 Designing robust stabilizer with pole place-
ment by Solving LMI Problem

By applying the proposed method in Section 4, the
feedback matrix gain is achieved for the under study
power system

k= [—0.5899466391 292.6014667524
—9.37859374 —0.0407642254]. (37)

Figure 7 shows the closed loop poles of the set of plants
with the stipulated variations in P, @ and X.. As seen,
the eigenvalues has been shifted into the desired region
of the complex plane for the entire set of plants. Also
Fig. 8 shows closed loop eigenvalues if feedback gains
determination problem is solved for oval shaped LMI.

5.3 Designing Conventional PSS

Power system stabilizers can extend power transfer
stability limits which are characterized by lightly damped
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or spontaneously growing oscillations in the 0.2 to 2.5 Hz
frequency range. This is accomplished via excitation con-
trol, providing damping to the systems oscillation modes.
Consequently, the important issue is the stabilizers abil-
ity to enhance damping under the least stable conditions,
ie the performance conditions.

Conventional PSS is a controller which stabilize a
power system and has a lead-lag transfer function and
damp response of the low frequency oscillations (Aw). A
high pass filter is used before lead-lag controller to pre-
vention harmful effects of the dc signal or very low fre-
quency changes. Finally PSS transfer function obtained
like Hpgs(s) = lfﬁfs %iz form. In this stabilizer T}
and K¢ are the controller parameters. In this study,
we design the conventional PSS for the second operat-
ing point.

5.4 Comparison between proposed stabilizer and
conventional PSS

In order to compare the performance of the proposed
stabilizer and conventional PSS, the system response
Aw(t) in the case of applying these stabilizers for three
different operating points are provided in Figs. 9 to 11. As
shown in these figures, proposed stabilizers response has
less overshoot and settling time with respect to conven-
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Fig. 9. The response of Aw(t) with respect to time in the first
operating point by using proposed robust stabilizer compared with
conventional PSS
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Fig. 11. The response of Aw(t) with respect to time in the third
operating point by using proposed robust stabilizer and conven-
tional PSS

Table 1. Overshot and settling time of the proposed robust stabi-
lizer’s response Aw(t)

Operating point
First Second Third
Settling time| 0.405 0.312 0.33
Overshoot | 0.003971 0.00373 0.003897

Table 2. Overshot and settling time of the conventional stabilizer’s
response Aw(t)

Operating point
Flirst Second  Third
1.59 1.93 1.96
0.02903 0.02242 0.02871

Settling time
Overshoot

tional PSS. In other word, the performance of the power
system is much desirable in the case of using the pro-
posed stabilizer for all operating condition. It should be
noted that the first and second operating points are even
out of range for which the proposed robust stabilizer has
been designed. Also, third operating point is also a bound-
ary operating point at the corner of the operating point
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Fig. 10. The response of Aw(t) with respect to time in the second
operating point by using proposed robust stabilizer and conven-
tional PSS

range. In order to compare the performance of both sta-
bilizers quantitatively, the overshoot and settling time of
the responses in all operating points have been provided
in Tabs. 1 and 2 for the proposed and conventional PSS
respectively. By comparing them, it is concluded that
proposed stabilizer has less overshoot and settling time
compare with conventional stabilizer. Furthermore, it is
illustrated that proposed stabilizer, stabilize power sys-
tem oscillations not only for the proposed operating point
range, but also for other operating point out of the range
of design problem.

6 CONCLUSION

In this paper, a new method for robust PSS design is
presented. For this purpose, designing robust stabilizer
problem by specified eigenvalues region is converted to
a LMI problem; therefore solving LMI problem leads to
finding robust state feedback, which is computed based on
the region placement of the system poles. Consequently,
this stabilizer shifts the power system poles in different
operational points into the desired regions in s-plane,
such that the response of the power system will have
proper damping ratio in all the operational points. It pro-
vides the desired closed loop performance over the pre-
specified range of operating conditions. This stabilizer de-
creases overshoot and settling time of the power system
response. Finally, to illustrate proposed stabilizer advan-
tages, proposed stabilizer is compared with conventional
PSS. Consequently, designing a new robust power sys-
tem stabilizer based on pole placement technique is con-
verted to a LMI problem, solving this LMI problem leads
to determining feedback gains robust which makes power
system robust with enough damping against changes in
operational points.

Appendix A — The model parameters of the
case study

The parameters of the model and the synchronous gen-
erator, which is used in this study, are given as follow. All
values are in per unit (pu) except the H and T that are in
second: H = 5sec, T, =6sec, X.=16pu X;=
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1.55 pu, X/ 0.32 pu Also, the system excita-
tion parameters are Ky 400, K 0.025, Ty
0.05 sec, Tr = 1 sec. Moreover, the parameters, which
are used in the controller design, are

Pl—self—tuning = _1-077 P2—se1f—tuning = 0.6376,

Weconventional-PSS = 767 Cconventional-PSS = 02;

T2—C0nventional—PSS = 0-27 Kconventional—PSS =5.622.
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