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REDUCING OSCILLATIONS DURING POSITIONING
OF A SERVOMECHANISM HAVING FLEXIBILITY

Peter Hubinsky *— Peter Hauptle **

This contribution describes the method of harmonic modulation of a velocity set-point signal in control to reduce undesir-
able oscillations. Especially the combination of this method with the well known input shaping method is of interest. Such a
solution seeks for instance to a control structure used for servomechanisms equipped with a gear-box or namely mechatronic
drives (MDs); where undesirable oscillations in transient- as well as semi-steady-states could arise. The combination of the
methods has been proofed under real conditions in an experimental setup. Based on this, simulations regarding different
industry demands and the proper choice of the modulation signal types will be introduced. Further it will be discussed which
modulation signal should be used for the corresponding ie industrial demands. Both proposed methods are in the category
of feed-forward-control which led to a practical implementation where no additional sensor (for measuring these undesirable

effects) is needed to improve the system dynamics.
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1 INTRODUCTION

In automation it is always a challenging aim to speed
a system up by having enough accuracy during position-
ing. In order to not exceed mechanical machine sizes, an
increase in speed often causes undesirable effects like vi-
brations or oscillations. Especially in robotics an oscillat-
ing end-effector during a movement or also at reaching
the target-position is cumbersome. In modular robotics
where mechatronic drives (MDs) are used, the combina-
tion of a servo-motor together with a gear-box and also its
electronics for control are fused to one module. This led
to a relatively high integration level which is pleasant.
The momentum of a servo-motor rises generally by its
size. Thus the gear-box in robotics is generally needed to
transfer the relatively high rotational speeds of a small-
size motor to a higher momentum at the output shaft
of the drive. Ideally the power (P = wM) would stay
at the same value. The use of the combination of such
small-size motors together with a gear-box, reduces the
weight and size which is of interest not only in robotics.
The harmonic drive ® gear-box type has the possibility to
have relative high reduction-ratios (ie1:121) by small ma-
chine sizes which is the reason why they are often used in
robotics. When having a mechatronic system (MS) where
iea servo-motor, harmonic drive ® gear-box and a load is
used, undesirable effects can occur. They can be specified
into to main groups namely transient-state effects and
semi-steady-state effects. Due to the gear-box and some-
times also due to the load flexibility would last which
is one mayor source for an undesirable oscillation dur-
ing positioning. The proposed methods to combat unde-

sirable oscillations are the input shaping technique (for
transient-state errors) and the relatively new technique
of harmonic modulation (for semi-steady-state errors) of
the set-point signal. The combination of both methods
and the considerations which should be made will be
introduced. The proper choice of the signal types used
for modulation will be discussed along simulations. An
finite-impulse-response-filter or namely FIR-filter for im-
plementing a shaper will be shown beside different ways of
implementing the harmonic modulator. The main advan-
tage of these two techniques is their feed-forward-control
structure where no additional sensors in the MDs are
needed unless that ones for servo-motor-control (position,
velocity, motor-current).

1.1 Brief Review

The use of a harmonic drive ® gear-box may led to
effects like the ”kinematic-error” mentioned in [1-3]. The
names origin is due to the effect which lasts generally
when the gear-box causes errors in robotics. Kinematic
describes the positions and poses in robotics regarding
the chosen coordinate-system. Thus an error caused by
the gear-box within a robotic system lasts in an error in
position or kinematic respectively. Non ideal assembly of
the flex-spline (a part of the harmonic drive) which led
to eccentric or also named to a dedoidal condition [2] can
also be a source of undesirable oscillations. Beside the
gear-box, the motor and the load can also cause spectral
components as eg torque ripples [4, 5] which lasts also in
an undesirable oscillation. Modeling of a harmonic drive
have been made by [6, 7]. [6] obtained further good results
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regarding torque control. A model summarizing the har-
monic drive gear-box together with the motor and load is
served by [8,9]. As already mentioned we seek for a solu-
tion where no additional sensor is capturing the undesir-

able oscillation. Hence feed-forward methods are of inter-
est. Regarding the transient-state oscillation the namely
input shaping technique is known to reduce or even elim-
inate them. In 1957 [10] introduced the idear of modify-
ing the input signal given to a system by using the input
signal and its positive casted version to namely posicast
control. With the right adjusted delay, both oscillations
which would arise out of these two signals, would self-
canceling each other. Later when applied for positioning
the posicast control is then mostly named input shap-
ing. In 1988, [11] extended the method (ie ZVD-shaper)
to be less sensitive for parameter changes. Also multi-
mode shapers in case of multiple transient oscillation fre-
quencies has been developed. A lot of these applications
also with modifications and different demands have been
made by [12-16] regarding the field of automation. The
method of harmonic modulation has been introduced the
first time in June 2011 in [17] and with a slightly differ-
ence in the control structure in [18]. Different optimiza-
tion methods for the signal types used for modulation
were introduced in [19]. Further investigation to signal
types has been also shown in [20].

1.2 Purpose of this Contribution

Within this contribution the proposed methods (shaper
in combination with harmonic modulator) will be shown
along the considerations which need to be made for imple-
mentation. Especially the specific demands which comes
along with different applications will be stated out and
discussed regarding simulations. This is important to
have a proper choice for the modulation signal type in
the harmonic modulator. Real measured results from an
experimental setup will be shown as a proof and to judge
the methods. Further different as well as new ways for
implementation will be given along practical issues.

1.3 Problem Statement

The aim of any method mentioned so far is to reduce
or ideally eliminate undesirable oscillations occurring in
a mechatronic system. In our case a mechatronic system
(MS) consists of a mechatronic drive (MD) and the load.
The used MD is a servo-motor combined with a harmonic
drive gear-box where the electronics and the controller are
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Fig. 6. Measured semi-stead-state oscillation (frequency-domain)

Table 1. System Parameters [8]

Parameter Value Unit
i 1/121 -
D 0.012 -
fa 16.918 Hz
fe 16.919 Hz
fr 16.917 Hz

also joined with the actuator to one module. Due to the
imperfect gear-box and in some cases also the load there
are flexibilities in the MS which may led to undesirable
oscillations. As to the fact, that only solutions regarding
control are the aim, the straightforward idea would be
the use of a sensor measuring these oscillations to serve
the information for feedback control.

In Fig. 1, a standard cascaded control structure is
shown, where the dashed (red) line shows the wished feed-
back of the actual value. The problem is, that a solution
with an additional sensor is not worthwhile due to the
following reasons:

e Constructional issues: size & weight of the sensor,
wiring via brushed contact rings
o Costs
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o FEzistence of suitable feed-forward solutions

In [8,9] it is already shown, that for a mechatronic
system like the used experimental setup there are two
different origins for oscillations.

In Fig. 2, a commonly used set-point profile for a basic

movement, namely trapezoidal-velocity profile, is shown.
During acceleration and deceleration phases namely the
transient-phase, the transient oscillation will be excited.
Depending on the system damping, the transient oscilla-
tion lasts longer than the actual transient-phase. Thus,
the time-range where the transient oscillation occurs is
tenamed transient-state.
In case of not the transient-state but moving with a con-
stant velocity (semi-steady phase) we have the situation of
namely semi-steady-state. Within semi-steady-state there
is also a oscillation of the MS due to the kinematic-error
and others.

1.4 Transient-State Oscillation

In Fig. 3 the measured transient oscillation occurring
by a very small impulse as set-point signal is shown. In
[8,9] the system got modeled to a relatively low damped
oscillating system namely “P-Ty”-system (0 < D (=
0.012) < 1/v/2).

In Fig. 4 the relation between the system eigen fre-
quency (f.) and the resonance frequency ( f,) is shown
regarding the damping is of the form (0 < D (= 0.012) <
1/V3).

Then the transfer function (regarding position) of such
a system can be written as [8, 9]

1

— D<1/\V2 (1)
142D + %

G =

where ¢ = 1/121 is the specific gear-ratio of the harmonic
drive gear-box which is known and the s indicates the
complex variable domain. The w, is the angular eigen
frequency or also natural frequency. This can be obtained
by the use of the following relation [21, 22].

_ /1 D2 __ Wd
wg =weV1—D :)we—m (2)
where wy is the angular frequency of the damped oscil-
lating system. In addition the resonance frequency ( f, or
it’s angular representation w, ) is also of deeper interest
which can be determined due to [21,22]
1
for D < —. (3)

Wy =weV 1 —2-D2 7

This is already illustrated in the Bode scheme in Fig. 4,
where we might see, that the maximum gain (resonance)
occurs when the input signal has the same frequency
equal to the resonance frequency. With the used exper-
imental setup the values stated out in Table 1 could be
obtained from modeling.

Note . The proposed feedforward method to reduce
this kind of an undesirable oscillation is the input shaping
technique.
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1.5 Semi-Steady-State Oscillation

Based on the experimental setup in Fig. 5 the mea-
sured time domain signal of a semi-steady-state oscilla-
tion is shown [8,9].

Figure 6 shows the respective frequency domain infor-
mation (single sided amplitude spectrum).

In a pure linear system there would no undesirable
oscillation occur during the phase (see add. Fig. 2) of
moving with a constant velocity. Constant velocity is a
so said steady-state because no transient condition eg
acceleration is occurring. Due to the fact that the system
is moving we introduced the specific name semi-steady-
state. The latest empirical model has been developed in
[9]. For this contribution it is not of interest working with
an empirical model because then the proposed method
is not comparable for other applications than our used
setup. Thus it will be shown later, that we can even
show the advantage of the harmonic modulator using
in simulation the linear transfer function in (2), which
will cover a more widespread range of applications. In
addition this would allow us to say that the method will
work generally.

Note . The proposed feedforward method to reduce
this kind of an undesirable oscillation is the harmonic
modulation of the velocity set-point signal.

1.6 Control Structure

In [18], the proposed control structure in Fig. 7 has
been introduced the first time.

The set-point signal is generated by the use of trape-
zoidal trajectories as indicated in Fig. 2. The left and
right blocks with the shaper modifies the set-point signal
to suppress the transient oscillation. The “1/s”-blocks
indicates numerical integration. This, together with the
dashed lines is only needed if map-based pilot control is

wished. The w is then only a conversion factor to bring
the acceleration- to a current-signal. A three stage cas-
caded control is used, where position, velocity and motor
current is controlled. There is to say that an incremen-
tal encoder mounted on the motor-shaft is used to de-
termine the position and velocity of the drive. The right
highlighted block indicates the mechanical and electrical
part where the servo-motor is driven by a pulse-width-
modulated signal. The gear-ratio 7 reduces the speed by
increasing the momentum. The dynamics of the gear-box
are not specifically measured as already mentioned. The
bottom highlighted block indicates the harmonic modu-
lator. Depending on the actual speed as well as the given
percentage in Kperc, the gain K, for the amplitude of
the modulated signal is generated. That is a single sine
signal for modulation is applied whose frequency is stated
out in w4 The harmonic modulator can also be placed
before or after the shaper (like introduced in [17]).

2 THEORY

Within this section all theory parts will be handled.
The proposed methods harmonic modulation as well as
the input-shaping will be shown and new ways of imple-
mentation regarding digital discrete systems will be in-
troduced. In addition some simulations are shown which
will be discussed later.

2.1 Harmonic Modulation

When keeping in mind Fig. 7 then the harmonic mod-
ulator for a single sine signal can be stated out to

Out = - Ky, Sin(27rfmodt) = —Kp Sin(wmodt)

(4)

and

Kn = Kpere($art) (5)
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Table 2. Optimization results [19]

Optimizing method ampl. ratio value
min hist-domain af = miny =0.105
min quad. hist-domain  ay = miny: = 0.205
min time-domain ay = ming =~ 0.139
min quad. time-domain  ay = min,z = 0.157

hist at zero ampl. aj = 37;;22 =0.1

quad. hist at zero ampl.  ay = g:;g =0.2

Fourier: af = af fourier = 0.111

where we might see, that the amplitude gain K} is due to
Kpere always relative to the actual velocity of the servo-
motor (¢ ). The i is the specific gear-ratio ie 1:121.

Note . Sofar fpoq is always constant.

In case of a multi sine signal the following can be
written

Out = Ky, Z Ky, sin(2mn fot) ©)
6

= Kh Z K}m sin(nwot)

where fj is the the first harmonic or the lowest frequency
content. The n indicates the nth harmonics of fy. The
K}, is an additional weight to adjust the specific gain for
each harmonic.
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2.2 Signal-types for Modulation

In [20] different signal types for the use in a harmonic
modulator has been investigated. The most interesting
two of them will be mentioned below which is needed
for further investigation or simulation respectively. Beside
the signal in time-domain also the histogram or namely
hist-domain is important. The more histogram is uni-
formly distributed, the better regarding transient-effects
[20].

2.2.1 Sine signal

The sine signal, see also (16), offers good performance
and is relatively easy to implement [20].

In Fig. 9 we may see that the histogram is not uni-
formly distributed like when having eg triangle signal, the
dashed, (red) curve in Fig. 10. The triangle signal itself
does have higher harmonics or higher frequency contest
respectively. This may arise a transient oscillation which
is not of interest; although the hist-domain is “ideal”.

2.2.2 2nd order triangle signal

The 2nd order triangle signal, see also (18), is a com-
promise between the “ideally hist-domain” triangle signal
and having only a few harmonics (e 2, thus 2nd order)
[20].

In Fig. 11 we may see that the hist-domain of the
2nd order triangle signal is compared to Fig. 9 closer to
the uniformly distributed case. As already mentioned the
2nd order means that two different harmonics are used
to build up that signal ie the first and the third har-
monics. Then the question is what might be a good fit-
ting ratio between the amplitudes of these two frequency
contents should be used (see also (18)). This ratio is
named “ay” and in [19] different ways of obtaining an
optimum setting for a¢ has been analytically developed.
Later some new practical simulations will be introduced
and discussed. The histograms lasts to Table. 2 and are
plotted in Fig. 12.

Table 2 summarizes the results of the different opti-
mization techniques used in [19]. The last row is an ad-
ditional case to be comparable with the Fourier inter-
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pretation cut after the 3rd harmonic. So in general the
optimum values for ay could be limited to [19]

01<a;<02. (7)

Later new simulations will use these results from Table 2.
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2.2.3 Discrete Implementation

Generally, there is to mention that with respect to
Fig. 8 as well as Fig. 10 we have only “odd” function
types which means that only odd harmonics are existing.
This simplifies the implementation in the following way:
To obtain the signal over the full period we need actually
only focus to the first quarter of a period. When having
the first quarter (0 <t < T/4) then the second quarter
(T/4 < t < T/2) can actually be vertically mirrored
(due to “axial-symmetry”) at ¢ = T'/4. Up to now the
first half period is ready (0 < t < T/2). The second
half period (T/2 < ¢t < T') can then again be mirrored
horizontally (due to “point-symmetry”) from the first half
period. Thus we may say, that knowing the first quarter
period of an odd function is enough to implement the full
period of such a function.

In a discrete system there are in most cases two differ-
ent kind of efforts when implementing an algorithm. Ei-
ther the algorithm takes more efforts in calculation time
or it takes more efforts in consuming memory.

In most discrete system like microcontrollers, PLCs,
etc the operations: adding, subtracting, multiplying, di-
viding and modulo are basically supported. The use of
a sine, cosine or tangential operator are mostly causing
more efforts in such a device. For our demands we need
to focus on the sine function which is used in both signal
types (sine, 2nd order triangle). One way to calculate the
sine in a discrete system is to use the supported already
coded library. Second possibility would be the use of a
“look-up-table”. Regarding on the resolution chosen (eg
16bit) the interval 0 < ¢ < T'/4 is divided by (eg 65535
@ 16bit) steps and stored in memory. So to each interval
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step the respective value is stored in memory. A third al-
ternative would be the use of a “Taylor-approximation”
especially for that interval 0 < ¢ < T'/4. Roughly spoken:
The Taylor-approximation is a polynomial approximation
ie of the sine signal. For a specific interval a finite poly-
nomial function exists which is very close to the “pure”
sine function. The Taylor-series is defined as [23]

> f(m)
DEAUIT 0
m=0 :

where b (ie b= 0) is the seeding value around the series
will be build up. The f™) is the mth derivation of the
specific function (ie sine). The solution especially for the
sine function can be written to [23]

. _ s (_1)m 2m—+1 __
W=D e TR

An approximation would be a value for (m < o).
Note: The value b = 0 is good fitting because for small
values of ¢ the sin(t) ~ ¢t which affects good as a linear
approximation. Otherwise the middle of the interval of
interest (ie b = T/8; 0 <t < T/4) would be the right
choice.

2.3 Input-Shaping

Regarding the case when using posicast-control for
shaping the set-point signal for positioning system and
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the investigation in [15] are the basis for the following
two shaper types. We just want to show the ZV-shaper
beside the ZVD-shaper. When considering a movement
where the trapezoidal velocity profile is used (see also
Fig. 2) then the acceleration or deceleration phase is of
interest. In Fig. 13 we can the set-point signal during the
deceleration phase of a movement. The upper plot shows
the position over time, the plot in the middle the velocity
over time and the lower plot the acceleration over time.

Note . In Fig. 13 no shaping is applied.

2.3.1 Zero Vibration

The ZV-shaper would change the set-point signal for
example to that one shown in Fig. 14. The only parame-
ters need to be known to set the shaper properly are the
system eigen frequency ( f.) as well as the damping (D).

The shaping might be very good visible when hav-
ing a look to the acceleration signal in Fig. 14 compared
to Fig. 13. We might also see, that the duration of the
movement is slightly increased. This is the cost of using
a shaper to reduce or even eliminate an undesirable tran-
sient oscillation [15].

2.3.2 Zero Vibration and Derivative

The ZVD-shaper does also need the two parameters
fe and D and lasts for example to Fig. 15.

Compared to Fig. 14 the duration of the movement
is again slightly increased. This is the cost of being less
sensitive to parameter changes like shown in Fig. 16 [15].

Figure 16 shows that when having a linear system
and the shapers are set properly (f/fs = 1) then both
shapers are completely eliminating the undesirable tran-
sient oscillation. This means no residual vibration of the
system is lasting. If the shapers are not set properly eg
when f/fq = 0.9, then the ZVD-shaper offers a better
performance compared to the ZV-shaper, thus less sen-
sitive. Note: f. is the system eigen frequency or natural
frequency which is a fundamental information of a linear
system. The f; is the damped frequency oscillation which
lasts at the system output (see also (2)).

2.3.3 Discrete Implementation

The discrete structure which can be used to implement
both types of shapers is shown in Fig. 17. The figure
shows a Finite-Impulse-Response filter (FIR-filter) which
can also be seen as a taped-delay filter comparable to
a First-In-First-Out buffer (FIFO-buffer) with weighted
factors. The big advantage of a FIR-filter is that they are
always stable in their behavior.

The z in Fig. 17 indicates the discrete time. Thus the
block with 2! is actually a time delay of ¢ = [- T, where
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[ must be an integer. The Ty is then the respective sam-
pling time used in the system. The by, b; and by are
weighting factors. Where by is just used when implement-
ing the ZVD-shaper. In case of the ZV-shaper, by can be
set to zero or just neglected. The question now lasting is
how to get proper values for I, Ty, by, by and (if needed)
by . Generally due to [10]

(10)

where in some cases there is a difficulty to force ! to an
integer. To find a proper choice regarding 7T in [24,25]
are possible proposals published. If T is already fixed
and the error due to the rounding error which would
arise when satisfying (10) is too large, in [15] a method
is introduced where b; is split into two factors eg to by 1
and by with a relatively short time delay in between.
In case of the ZVD-shaper also by might also be split to
b21 and by respectively. Regarding the ZV-shaper the
following two relations can be written [15]

1 a

by = by =
T 1ya’ 15 a

(11)

vain
5 | gain |

0 2 4 6 8 10 12 14 16 18 20
frequency (Hz)

Fig. 19. Simulations of 2nd order triangle; ay = 0.157, Kperc =
8%, fimoda =0.4Hz; (a) — P-T2 system, (b) — transfer behavior of
the modulator, (c¢) — the whole system behavior

and
Dr

V1-D2

o =e€

(12)

where e is the euler number and D the damping of the
system (see add. (1)). Regarding the ZVD-shaper and
with respect to (12) we may write [15]

1 20 a?

by = — = by= .
T2 T (1+a? P (1ta)?

(13)

2.4 Basis for Simulations

The use of Bode plots showed very good visualizations,
especially when using linear scaled axis instead of the nor-
mally logarithmic scaling. The absolute gain is of major
interest. Roughly spoken: The Bode plot for the abso-
lute gain can practically be obtained by feeding the sys-
tem with a ”chirp” sine signal. This means a sine signal
whose frequency starts at 0 Hz and will be increased step
by step up to the wished end of the graph. Important
is, that the increase of the frequency is slow enough that
the system has no transient-effects anymore. By doing so
in every step, the specific output gain of the investigated
system is plotted. Thus, this will last to the Bode plot for
the absolute gain.

Simulations to judge the performance of the harmonic
modulation are needed. Hence, in the following steps
the theory on which the regarding simulations are based
on, will be introduced. Due to linearity where super-
imposing is allowed, the system impulse response g
(9¢) = £ '{G}) together with the modulation signal
y(t) and the gain of the harmonic modulator K}, led to
the following equation

(€49} + En{y(OgOH] (s juy = Gattgey  (14)

where the “overall” transfer function is G, and £ indi-
cates the Laplace transformation.
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Fig. 21. Simulation 2nd order triangle with diff. a;’s; Kpere = 8%),
fmod =04Hz

Let us further keep in mind the Euler-form of a sine
signal like applied here

1 , )
Sln(wmodt) = — (ejwm,odt _ e*]wmodt)
/ (15

— sin(wmodt) = Z (efjwmodt _ ejwmodt)

where j indicates complex unit and w,,,q indicates the

modulation frequency. For a modulation signal like shown

in Fig. 7 and with respect to (6) where a sine signal is
used we can state out

y(t) = —Kh sin(wmod t). (16)

Then the system transfer function G (see (1)) can

be combined with the respective transfer function of the

harmonic modulator and additionally with respect to (4)
we may write

. 1
Gall(jw) = G(]w) + Khj_2

X [G(jw — jwmod) — G(jw + jwmoa)] - (17)

For a modulation signal containing multiple sine sig-
nals (ien = 1, 3) and with respect to (6) we can further
state

Yoy = — [sin(wmodt) — af sin(3wmeat)] . (18)

1+ay
Regarding the simulation with bode we can state out

Gall(jw) = G(jw) + F(jw,nzl) - a’fr(jw,n:S) .
Wmod,n = TWo , n=1,3,
K 1

o Z [G(j(w + nwO))*G(j(w — nwo))}

(19)

Lo, n) =

where the multiplication by 1/¢max is just a norm to fit
the maximum (amplitude) value (¢max, Cmin) to £1. The
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Fig. 22. Simulation 2nd order triangle with diff. af’s; Kperc =
20%, fmoq = 0.1 Hz

subscript mod of jwmeq indicates the modulation fre-
quency and wy its first harmonic. The jw is the argument
of the function.

With respect to (17) and applying to (19) we can now
simulate the “overall” system for investigation.

remarkRemark The simulation technique via bode
doesn’t match exactly the used harmonic modulation in
the experimental setup or (4) respectively (see addition-
ally Fig. 7). In the sense of creating bode plots we do
not have the information of the actual or set-point motor
speed wps over jw. Never the less, by using the angular
system frequency w (available at bode) which may cor-
relate with wjys should allow us to use this instead. This
has been verified in [17,18, 20].

2.5 Simulations

Figures 18-20 show the bode plots with different set-
tings. All of them are in both axis linear scaled instead
of logarithmic due to a better visualization. The dashed
(a) curves are indicating the P-T9 system from (1). The
dashed-dotted (b) curves are indicating the respective
transfer behavior of just the modulator. The solid (3)
curves graphs are then the overall system behavior where
harmonic modulation is applied.

In Fig. 18 the case of using just the sine signal type
for harmonic modulation is shown. Fig. 19 shows the use
of a 2nd order triangle signal.

In Fig. 20 the same signal type is used but the mod-
ulation frequency has been reduced from f,,q = 0.4 Hz
t0 fmod = 0.1 Hz and the gain has been increased from
Kperc = 8% to Kpere = 20%.

Due to the last two figures we might see, that when
changing the modulation frequency a change horizontally
(X-axis, frq.) can be recognized. The higher fn,0q the
more “wider” is the dashed-dotted curve and therefore
the solid curve. A change in gain would last in changes on
the Y-axis (—gain—). Moreover we can see that although
the same signal type is applied the shape changes when
comparing Fig. 19 with Fig. 20.
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Fig. 23. Movement though 180 deg at max. 16 deg/s — without

shaper & harmonic mod
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Fig. 25. Movement though 180 deg at max. 204 deg/s — without
shaper & harmonic mod

With respect to Table 2 and the results from [19]
a more deeper investigation should be made. Therefore
Figs. 21 and 22 are shown. Both figures show the effect
of changing Kpere = 8% and fi0qa = 0.4 Hz, Fig. 21, to
Kpere = 20% and fioq = 0.1 Hz, Fig. 22. Additionally
there is to say that the graphs in these two figures has
been obtained by subtracting the P—-T5 system transfer
function (1) and dashed in Fig. 20, by the overall system
transfer function (19) and solid in Fig. 20. In our focused
region of interest (“the resonance zone”; 15...19Hz)
this might be a good and valid method. This makes it
easy to judge the performance. Hence, the higher the
values above zero in Y-direction the better. Everything
below zero in Y-direction is worse.

By comparing Fig. 21 with Fig. 22 we can see that gen-
erally the better performance is shown in Fig. 22 where
the lower modulation frequency and the higher gain is
used (Kperc = 20%, fmod = 0.1 Hz). The higher fi,oq
in Fig. 21 needs to reduce the gain to make the perfor-
mance not worse. Additionally at 15.7 Hz and 18 Hz the
performance is lower compared to Fig. 22. Regarding the
right choice for ay we can state that ay ~ 0.1 might be
the best choice for any settings of froq or Kperc.

N acceleration (m/st)

time (s)

Fig. 24. Movement though 180 deg at max. 16 deg/s — with shaper
& with harmonic mod; Kpere = 10% frmod =2Hz
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, | e
. |

0 02 04 06 08 10 12 14 16 18 20
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Fig. 26. Movement though 180 deg at max. 204deg/s — with
shaper & with harmonic mod.; Kperc = 8% finod = 0.4 Hz

3 EXPERIMENTS

In Figs. 23 and 24 the drive moves with a constant
velocity of 16 deg/s (output-shaft, not motor-shaft) over
a distance of 180 deg. The full movement could not be
captured due to data acquisition limits. After the time
of 7 seconds we just see the lasting transient oscillation
and before just the semi-steady oscillation. In Fig. 23
no input-shaping as well as no harmonic modulating is
applied.

In Fig. 24 a ZV-shaper is used as well as the harmonic
modulation with a sine signal type is applied.

When comparing Fig. 23 with Fig. 24 we can clearly
see the almost elimination of the transient oscillation.
During semi-stead-state the envelop of the modulated
sine might be visible. We might also say that the semi-
steady oscillation is reduced as well (7% to 30% regarding
17,18, 20)).

Note . The reason for using here especially f0q4 =
2 Hz instead of f,,0q = 0.4 Hz compared to the sim-
ulation in Fig. 18 is for better visualization. The lower
frequency (0.4 Hz, 0.1 Hz) would make it hard to sepa-
rate the envelop of the sine from the natural fluctuations



Journal of ELECTRICAL ENGINEERING 63, NO. 4, 2012

Y

P

Fig. 27. Tangential velocity of XY-positioning

of the semi-steady-state oscillation. In addition there is
to say that in [17,18,20] especially for that reason the
frequency-domain was used to judge the method. The
time-domain offers instead a much better visualization of
the transient oscillation and has never been before pub-
lished which may justify this decision. Especially the com-
bination of both methods (shaper, modulator) is the focus
in this contribution.

In Figs 25 and 26 a relatively fast movement of the
drive with 204 deg/s is shown. Thus there is almost
no semi-stead-phase and therefore practically no semi-
steady-state. Hence the harmonic modulator wouldn’t be
able to serve an improvement. This kind of measurement
shall specifically show if the harmonic modulator will af-
fect the performance of the shaper. In Fig. 25 no shaper
and no harmonic modulator is used. Not only but espe-
cially after the time of 1.4 seconds the transient oscilla-
tions in both figures are visible. In Fig. 26 a ZV-shaper
as well as a harmonic modulator using a sine signal type
is used.

When comparing Fig. 25 with Fig. 26 the shaper might
not have the same almost perfect performance than in
Fig. 24. Never the less a reduction is clearly visible too.

4 DISCUSSION

The measured experiments by the used experimental
setup is very important to show that the proposed meth-
ods are generally working as intended. This more prac-
tically way of validating the simulated results may proof
the methods. Moreover at higher moving velocities like
shown in Figs. 23 and Fig. 25 it might be clear that the
harmonic modulator will not make the use of a shaper
dispensable. Regarding the investigation to proper val-
ues to set the harmonic modulator the following can be
stated out: When using a relative low modulation fre-
quency ( fmoa), then higher gains (Kperc) in the modu-
lator can be used to obtain a better performance in sense
of reducing undesirable semi-steady-state oscillations. In
many cases a higher modulation frequency would fit bet-
ter due to the duration time of a movement. A move-
ment of the drive should be at least as long as 1/ fmod
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(one period) where 2.5 seconds (0.4 Hz) are better than
10 (0.1 Hz). Depending on this behavior f,,q4 should be
considered. In any case ay ~ 0.1 is a good choice when
using the 2nd order triangle signal type. This could be
clearly shown by simulations.

When implementing the harmonic modulator in a dis-
crete system and memory is not a matter, than the look-
up-table technique should be used. This will last in the
most fastest implementation by very less computational
costs. Then only a value need to be read during runtime.
When calculation power is not a manner, then the sine op-
eration should be used directly from the respective math-
library which is generally supported. A compromise when
for other reasons a math-library does not want to be used
or is not available, the proposed Taylor-approximation
can be used. This lasts in basic math operations like mul-
tiplication, addition etc see (9).

5 CONCLUSION

The newly acquired measuring results in time-domain
(Figs. 23-26) showed the performance of the harmonic
modulator in combination with input-shaping. Especially
in time-domain the performance of the shaper could be
stated out more clearly than in previous publications.
Generally the methods are working. The new ways of
implementing the methods, can additionally reduce the
computational efforts in the discrete system where they
are planned to be implemented. In this contribution the
full overview of both proposed methods (shaper, modula-
tor) should be served along some practical issues like the
implementation. The simulated results beside real mea-
surements should make clear that the performance of 7%
up to 30% improvement in sense of reducing any unde-
sirable oscillation could be reasonable. Not using an ad-
ditional sensor in control might be a very attractive con-
sideration for industrial demands. Even when having a
multi axis system like to linear axis, then the harmonic
modulation shouldn’t change the position accuracy like
the Fig. 27 shows. The dashed line is showing the tra-
jectory from position P; to position P». The closer the
dashes, the higher the velocity. The line itself is straight
which is the aim to held precision. Just the velocity is
tangentially changing. Sure this is not desirable for all
kinds of applications like welding or LASER-cutting for
instance. In applications where 8% or even 20% (Kperc)
tangential velocity changes are allowed the methods are
worth to implement.
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