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INVESTIGATION OF ERROR CONCEALMENT
USING DIFFERENT TRANSFORM CODINGS
AND MULTIPLE DESCRIPTION CODINGS
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There has been increasing usage of Multiple Description Coding (MDC) for error concealment in non-ideal channels. A
lot of ideas have been masterminded for MDC method up to now. This paper described the attempts to conceal the error
and reconstruct the lost descriptions caused by combining MDC and lapped orthogonal transform (LOT). In this work LOT
and other transforms codings (DCT and wavelet) are used to decorrelate the image pixels in the transform domain. LOT
has better performance at low bit rates in comparison to DCT and wavelet transform. The results show that MSE for the
proposed methods in comparison to DCT and wavelet have decreased significantly. The PSNR values of reconstructed images
are high. The subjective evaluation of image is very good and clear. Furthermore, the standard deviations of reconstructed
images are very small especially in low capacity channels.
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1 INTRODUCTION

Multiple Description Coding (MDC) is a source coding
technique that is robust against inevitable transmission
errors. MDC encodes a media source into two or more
sub-bit streams (descriptions) that are of equal impor-
tance. These descriptions can be decoded independently
to produce a signal of basic quality. When more descrip-
tions are received, the decoder can gradually increase the
quality. The insertion of a certain amount of redundancy
in the descriptions among the stream is the cost of this op-
eration. However, redundancy in different descriptions is
utilized to estimate the loss description when packet loss
happens. There are several methods for applying multi-
ple description coding, but it was founded basically two
groups are more common in literature. One is Multiple
Description Scalar Quantizer (MDSQ) [1–3] and the other
is Multiple Description Transform Coding (MDTC) [4, 5].

DCT has been a very popular transform for many
years. The fact that DCT is a near optimal transform
is the main reason for its popularity. The optimal trans-
form up to now is Karhunen Loeve Transform (KLT).
Though it is optimal, it is not widely adopted since it is
very complicated and slow. There have been some new
algorithms proposed to improve the KLT to make it less
complex [6, 7], still the complexity in KLT is considered
high. DCT, the closest to KLT, is much faster to compute.
DCT is also very closely related to the Discrete Fourier
Transform (DFT). It is actually possible to compute DCT
using DFT [8].

The main difference between DCT and DFT is that
DCT only has real values which make it comparatively
easier to compute. In recent years, the wavelet transform

has been often employed in transformed image coders.
The wavelet transform reduces the entropy of the image
just like other linear transforms. It means that the wavelet
coefficient map has lower entropy than the image. Com-
pared to the DCT, the wavelet transform allows better
localization in both frequency and space [9]. Blocking ar-
tifacts are omitted in a wavelet based coder.

A new class of orthogonal transforms is called lapped
transforms, which are developed by [10] that have been
applied in a vast majority of areas such as filtering, im-
age and speech coding, spectral estimation and many
others where a traditional block transform is employed.
These lapped transforms are developed to overcome the
block artifacts that have been so common in traditional
block transforms like the DCT [9–11]. Besides reducing
the block artifacts, the lapped transforms have fast com-
putational algorithms. The main point is that the LOT
has higher coding gains than the DCT.

In this paper joint MDC with LOT is proposed to
eliminate errors, which occur in channels during trans-
mission. The goal of using LOT is to change the cor-
related pixels of the image to independent symbols in
mapped domain. The advantage of using LOT is that it
has high performance in low bit rates, which is useful in
low capacity channels. So in this case, lots of redundant
data can be eliminated. Then by using MDC, indepen-
dent and equal information of descriptions are transmit-
ted to the receiver. If some of the received descriptions
are corrupted, other safe received descriptions are able to
conceal errors. Thus achieving data are robustness along
an aggressive channel.

In Section 2 MDC is elaborated and in Section 3
lapped orthogonal transform is explained. In Section 4
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investigation results are presented and finally Section 5
describes the paper conclusion.

2 MULTIPLE DESCRIPTION CODING (MDC)

A transform based image coder consists of a trans-
form, which maps the spatial domain image representa-
tion to the transform domain for better decorrelation; a
quantizer, which quantizes the transform coefficients to
achieve lossy compression; and an entropy coder, which
removes the remaining statistical redundancy between
quantized coefficients in a lossless manner. MDC methods
use various possibilities for adding redundancy to data.
Some of them employ subsampling in spatial or trans-
form domain, while others apply transforms to create in-
terleaved patterns or special scanning and quantization of
transform coefficients [11]. The block diagram of MDC is
represented in Fig. 1. At first, image is divided into two
or more descriptions, which are then being transmitted
along the channel. At the receiver, a high quality of im-
age can be reconstructed by MDC even though several de-
scriptions are lost during the transmission [12]. If a good
description is designed at a rateR1 is sent over channel 1
and another good description is sent over channel 2 at a
rate R2 . The signal reconstructed from either individual
description has the least distortion for that rate. However,
there is no reason to believe that this is a good way to allot
bits for the central description at rate R1+R2 similarly; a
good compressed representation at rate R1+R2 is hard to
be split into two good single descriptions. The central the-
oretical problem of MD model is to determine, the set of
achievable values for the quintuple (R1;R2;D0;D1;D2)
for a given source and distortion measure. The work of
El Gamal and Cover [12] gives one derivation of the the-
oretical boundary of (R1;R2;D0;D1;D2).

I0(A)

asi takto aj dalsie

SEM PRIDI TIETO, ale rozmery

dodrzat ako hore

{Xk}

MD

encoder

1

2
center

Channel

Signal

decoded from

side2

side1

d2

d1+d2

d1

Input signal

Decoder

Fig. 1. Block diagram of multiple description coding

Let a sequence of independent identically distributed
random variables x = (x1, x2, . . . , xn) have two side de-
scriptions denoted as x̃1 and x̃2 . The central description
is denoted as x̃0 It has been established in [12] that the
central distortion and side distortions D0 D1 and D2 are
achievable if there exists a probability mass distribution

p
(

x̃1, x̃2, x̃0

∣

∣x
)

p(x) with E{d(x, x̃m)} < Dm , m = 0, 1, 2
such that

R1 > I
(

x; x̃1

)

, R2 > I
(

x; x̃2

)

,

R1 +R2 > I
(

x; x̃1, x̃2, x̃0

)

+I
(

x̃1; x̃2

) (1)

where I denotes Shannon mutual information [13]. Some
achievable quintuples (R1;R2;D0;D1;D2) may not be
within the boundary specified by equation (1). The
boundary defined by El Gamal and Cover is called an
inner bound. The MD achievable region is completely
known only for memoryless Gaussian sources and it is
shown by Ozarow [14] that the achievable region for a
memory less Gaussian source with unit variance is the
largest set that can be obtained with boundary derived
by El Gamal and and Cover, which is

D1 ≥ 2−2R1 , D2 ≥ 2−2R2 ,

D0 ≥ 2−(R1+R2)γ(D1, D2, R1, R2)
(2)

γ =
1

1−
(
√

(1−D1)(1 −D2)−
√

D1D2 − 2−2(R1+R2)
)2

for D1 +D2 < 1 + 2−2(R1+R2) , and otherwise γ = 1.

The above equations are interpreted in three situations
[15]:

• The side descriptions are very good individually: D1 =
2−2R1 and D2 = 2−2R2 . Then,

D0 ≥ D1D2
1

1− (1 −D1)(1−D2)
=

D1D2

D1 +D2 −D1D2

(3)
which leads to D0 ≥ min(D1, D2)/2.

• The central description is as good as possible

D0 = 2−2(R1+R2) Then D1 +D2 = 2−2(R1+R2). (4)

• Intermediate between the above two extreme cases:
The situation is analyzed for the balanced case. Under
the assumptions R1 = R2 ≫ 1 therefore D1 = D2 ≪

1, 1
γ
= 1 −

(

(1 −D1) −
√

D2
1 − 2−4R1 ≈ 4D1 , D0 ≥

2−4R1(4D1)
−1 . Then,

D0D1 ≥
1

4
2−4R1 . (5)

An easy way for adding redundancy to the compressed
image bit stream is to conduct at the quantization stage.
Multiple description scalar quantization (MDSQ) has
been developed by Vaishampayan [1]. MDSQ works as
follows. Two side (coarse) quantizers function in parallel
at the quantization stage. The quantized source can be
reconstructed from the output of either quantizer with
lower quality or from both quantizers in higher quality.
When the outputs of two quantizers are joined together,
they create higher quality reconstruction due to smaller
quantization cells.

In practical, the encoder first uses a scalar quantizer.
At this stage, input variables are mapped to a quantiza-
tion index I [1]. Then, an index assignment is applied and
mapped each index I to a codeword index pair (i, j) in
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a codebook. Figure 2a presents the index assignment ma-
trix with spread 2. The cells of the quantizer matrix are
numbered from -7 to 7. The row and column indices of the
index assignment matrix form the index pair (i, j). Index
i is included in Description 1 and index j is included in
Description 2. The central decoder reconstructs the best
quality of the original input image. The side decoders es-
timate somehow low quality of the image. In Fig.2a, only
15 out of 64 cells in the index assignment matrix are oc-
cupied. Unoccupied cells constitute coding redundancy.
Figure 2b shows the index assignments with three diago-
nals (spread 3) being filled, hence lower redundancy.
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Fig. 2. (a) Index assignment spread 2, (b) Index assignment
spread 3

3 LAPPED ORTHOGONAL

TRANSFORM (LOT)

The key to the development of LOT is the recognition
that the blocking effects are caused by the discontinuities
on the basis functions of the transforms [16, 17]. The LOT
basis functions of the neighboring blocks overlap as is
shown in Fig. 3.I0(A)
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The basis functions which are the rows of the LOT
matrix represent a set of basis information, and an image
is nothing but a linear combination of all these infor-
mation. So when these basis functions of the neighbor-
ing block overlap, image distortion occurs. It is decided
that the basis functions of the transform can be made
longer than the transform length so that the basis func-
tions could have a smooth transition to and from zero
at their ends. As a result, the basis functions of the LOT
can be extended from the current block to the neighboring
blocks on both sides. Because the basis functions are now
overlapped between two neighboring blocks, these trans-
forms are named lapped transforms. Also the overlapping
portions of the basis functions of the neighboring blocks
should be orthogonal if the same basis functions are to
be used for both analysis (direct transform) and synthe-
sis (inverse transform). In standard block transforms, the
input signal is divided into blocks of N samples. These N
samples are transformed by an orthogonal matrix of order
N , where N is the block size, or the number of transform
coefficients. With the lapped transform, the L sample in-
put block is mapped into N transform coefficients, where
L is the length of the LOT basis functions, with L > N .
To maintain the total sampling rate, N new transform
coefficients for every new N input samples are computed.
After the computation of the LOT of a signal block, the N
samples of the new block are shifted into the L -sample
input buffer so that there will be an overlap of L − N
samples in the computation of consecutive LOT blocks.
It is assumed that L = 2N [16, 17], where the basis func-
tions of the LOT are the columns of a L × N matrix
P . Here P and P⊤ are the direct and inverse transform
operators. Since the direct transform operators are over-
lapped, the outputs of each inverse transform operator
is also overlapped for perfect signal reconstruction. The
reconstructed samples from different blocks are simply
added in the regions of overlap. The difference between
the regular transform and lapped transform is that when
an inverse LOT is applied to the set of transformed co-
efficients, L samples that are not equal to the original L
samples that were used to compute the direct LOT were
obtained. So only after the overlapping of consecutive in-
verse LOT blocks, the original signal would be recovered.
An optimal LOT should minimize the bit rate for any re-
construction error level. This is equivalent to maximizing
the energy compaction measure or maximum transform
coding gain GTC [18] given by

GTC =
1
N

∑N

i=1 σ
2
i

(
∏N

i=1 σ
2
i

)
1

N

(6)

where σ2
i are the diagonal entries of the matrix R0 that

is defined in equation (8).

An optimal LOT is obtained by an iterative optimiza-
tion technique that searches for a maximum of GTC [19].
It has the disadvantage of being highly sensitive to numer-
ical errors. So in [20], a direct approach is derived for an



174 A. Farzamnia — S. Kamilah — N. Fisal — S. A. Rahman: INVESTIGATION OF ERROR CONCEALMENT USING DIFFERENT . . .

optimal LOT when the basis functions of the neighboring
blocks overlapped by N samples, ie when L = 2N . Since
the lower order basis functions of consecutive blocks are
super imposed, a constant level is obtained and this flat
field can be transformed into one LOT coefficient. This
property is important for energy compaction and hence
compression. Let Rxx be the autocorrelation matrix for
the first order Markov process given by

Rxx =















1 ρ ρ2 . . . ρL

ρ 1 ρ . . . ρL−1

...
. . .

. . .
. . .

...
ρL−1 . . . ρ 1 ρ
ρL . . . ρ2 ρ 1















(7)

where ρ is the correlation coefficient between adjacent
samples. Any matrix P0 that diagonals the autocorrela-
tion matrix Rxx would be a feasible LOT. Defining R0

as

R0 = P⊤

0 RxxP0 = Z⊤P⊤RxxPZ , (8)

R′ = P⊤RxxP (9)

where Z is any orthogonal matrix of size N × N so
Z⊤Z = I . Therefore, Z is derived such that it will diag-
onalize the matrix P⊤RxxP to give an exact solution for
Z . Given a DCT, a feasible LOT can be defined as

P =
1

2

[

De −Do De −Do

j(De −Do) −j(De −Do)

]

(10)

where De and Do are the N× N
2 matrices containing the

even and odd DCT functions respectively and j is the
N × N counter identity matrix [21]. All the properties
of a feasible LOT that are discussed before are satisfied
by the P matrix. Using P,Z can be obtained as the
KLT matrix of R0 for a given correlation coefficient (ρ =
0.95). This optimization approach leads to an optimal
LOT that is related to the choice of the initial matrix P .
Each column of P has L elements, with L > N , spanning
in N dimensional subspace. For any Z , the matrix PZ
will also be in the same subspace and hence the LOT is
optimal. However, there may exist a feasible LOT that
does not belong to the subspace spanned by the columns
of P . Hence, an optimal derived by this procedure may
not be optimal globally in the sense of maximizing the
energy compaction.

4 INVESTIGATION RESULTS

In this chapter simulation result is presented. In the
first part, results of error concealment using MDC-DCT
are presented. Although in this method by applying zero
padding bit-rate is increased but high quality of received
image causes to withdraw bit-rate increment. In the sec-
ond part, the results of error concealment using MDC-
wavelet transform are shown. By using wavelet, there

could be no blocking effect compared to DCT. In the
third section, error concealment using MDC-LOT trans-
form is presented. Since LOT is used there is no blocking
effect and this method has high quality in low bit rates,
which is useful in low channel capacity.

4.1 Error concealment using MDC and DCT

Zero padding is pre-processing method [22]. In this
process, some zeros are added to the image until high
quality reconstruction of the image is achieved although
losing descriptions in the transmission channel. The zero
padding process is presented in Fig. 4. At first DCT is
applied to whole image. Then some numbers of zeros are
added to rows and columns. Inverse DCT is later used to
map the data to spatial domain. Hence, the correlation of
image is increased in this method. If there are losses in the
channel, by using received descriptions, lost descriptions
can be constructed in high quality. This method increases
the bit rate of transmission, but we can trade bit rate
increment to the quality of reconstructed image.
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In the simulation, Lena gray level 512 × 512 image
is used. At first DCT is applied to the image then 108
lines zero are added to end of rows and columns. Inverse
DCT is taken to obtain zero padded image in the spa-

tial domain X̂ . At the next step as method presented in
Fig. 5 four subimages are extracted from downsampled
zero padded image. Downsampling method is shown in
Fig. 6. From each subimage, DCT transform is performed
and by using MDSQ with spread 3, eight descriptions
are obtained from four subimages. These descriptions are
then coded and sent through channels. At the receiver by
taking average from received data, lost descriptions can
be reconstructed. Therefore, error conceals from image.
Then, the reverse process of above is conducted, two de-
scriptions are added together then by using inverse DCT,
the zero padded image is obtained after downsampling.

Table 1 shows average PSNR values of reconstructed
images with different bit rate and lost descriptions. The
values in the parentheses are standard deviation. Table 2
is average PSNR and standard deviation for [23]. In this
paper, MDSQ with spread 3 is applied. By comparing the
results of the proposed method with [23], minor decre-
ment in PSNR is achieved even though losing some de-
scriptions at the respective bit rate. Furthermore, stan-
dard deviation values in Table 1 are smaller than in Ta-
ble 2. For example, if one description is received (seven de-
scriptions are lost) in 0.58 bpp (bit per pixel), the PSNR
is 27.01 dB but in [23] with 0.625 bpp for one received
description the PSNR value is 22.88 dB.
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Table 1. Average PSNR values and standard deviation for pro-
posed method

number Bitrate
of lost

2.31bpp 1.15 bpp 0.58bppdescriptions

0 27.14 28.18 31.51
1 31.43 ( 0.05) 28.12 (0.07) 27.13 (0.1)
2 31.42 (0.2) 28.11 (0.15) 27.12 (0.21)

3 31.32 (0.18) 28.09 (0.17) 27.11 (0.2)

4 31.04 (0.25) 28.03 (0.22) 27.07 (0.26)

5 31.11 (0.2) 28.00 (0.17) 27.05 (0.03)

6 30.90 (0.22) 27.97 (0.25) 27.04 (0.11)
7 30.67 (0.07) 27.90 (0.05) 27.01 (0.08)

Table 2. Average PSNR and standard deviation for [23]

number Bitrate
of lost

2 bpp 1 bpp 0.625bppdescriptions

0 29.80 27.67 26.44
1 29.01 (0.12) 26.85 (0.13) 25.21 (0.18)

2 28.99 (0.71) 26.36 (0.58) 24.57 (0.86)

3 28.25 (0.61) 26.00 (0.61) 23.93 (0.76)

4 27.96 (0.95) 25.71 (0.68) 23.78 (1.1)
5 27.71 (0.6) 25.48 (0.62) 23.38 (0.78)

6 27.50 (0.8) 25.40 (0.96) 23.24 (1.39)

7 27.14 (0.33) 25.07 (0.32) 22.88 (0.39)
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Fig. 5. Error concealment using MDC, zero padding and DCT
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Fig. 6. Downsampling method

The higher compression used - in order to remove re-
dundant data from image and transfer the information
more efficiently - the lower is the (transmitted) bpp. But
higher compression ratio (lower transmitted bpp) brings
worsening of the reconstructed image, thus a higher com-
pression means lowering the PSNR. Lena reconstructed
image using the proposed method in 0.58 bpp with 7 lost
descriptions is shown in Fig. 7 while Fig. 8 shows Lena
reconstructed image in [23] with 7 lost descriptions in
0.625. For better understanding, the rate distortion plot
of Table 1 and Table 2 is shown in Fig. 9. As shown MSE
(mean square error) of the proposed method is lower than
[23].

4.2 Error concealment using MDC and Wavelet

transform

Orthogonal spline wavelet transform type with or-
der two is applied to downsampled subimages and each
of subimage is converted to two descriptions by using
MDSQ. If some of the descriptions are lost, then by av-
eraging the received descriptions, error can be concealed.
By adding each two description together and using inverse
wavelet, four subimages are obtained so upsampling pro-
cess is used to reconstruct the whole image from subim-
ages. The block diagram of the method is presented in
Fig. 10.
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Fig. 7. Reconstructed image with 0ne received description in
0.58 bpp
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Fig. 8. Reconstructed image with one received description in
0.625 bpp [23]
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Fig. 10. Error concealment using MDC and wavelet
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Fig. 12. Lena reconstructed image with one received description
in 0.5 bpp using MDC and wavelet

Fig. 13. Block diagram of error concealment using MDC and LOT
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Fig. 14. Reconstructed image with three lost descriptions in 0. 11
bpp with LOT method
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Fig. 15. Reconstructed image with three lost descriptions in 1 bpp
with LOT method
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Fig. 17. Original image of house
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Fig. 18. Reconstructed image with one received description in
0.1 bpp with LOT method

Fig. 19. Rate-distortion performance for error concealment using
LOT and MDC for house image (Again in this method from bottom

to top number of lost descriptions are increasing)

Fig. 20. Rate distortion performance of three proposed methods.
In each method from bottom to top number of lost descriptions are

increasing.
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Table 4. Average PSNR and standard deviation for Lena image using MDC and LOT

number Bitrate
of lost

0.11 bpp 0.28 bpp 0.51bpp 1 bpp 2.66 bpp 4.8 bppdescriptions

0 25.15 27.93 29.40 30.60 32.12 32.34
1 25.01 (0.2) 27.81 (0.3) 29.38 (0.4) 30.50 (0.31) 31.63 (0.51) 31.80 (0.39)

2 25.00 (0.19) 27.47 (0.15) 28.56 (0.22) 29.33 (0.17) 29.89 (0.27) 29.99 (0.6)

3 24.78 (0.1) 27.14 (0.2) 27.17 (0.34) 28.95 (0.29) 29.64 (0.41) 29.77 (0.32)

Table 3. Average PSNR and standard deviation for Lena image
using MDC and wavelet

number Bitrate
of lost

2 bpp 1 bpp 0.5 bppdescriptions

0 29.86 28.02 26.49
1 29.85 (0.03) 28.01 (0.05) 26.48 (0.1)

2 29.81 (0.13) 27.98 (0.16) 26.47 (0.14)

3 29.77 (0.21) 27.96 (0.24) 26.45 (0.18)
4 29.57 (0.3) 27.82 (0.27) 26.36 (0.32)

5 29.53 (0.25) 27.80 (0.23) 26.34 (0.19)

6 29.49 (0.15) 27.77 (0.14) 26.32 (0.15)

7 29.47 (0.07) 27.75 (0.09) 26.30 (0.06)

Table 5. Average PSNR for house image using MDC and LOT

number Bitrate
of lost

0.1 bpp 0.2bpp 0.57 bpp 1.65bpp 3.4 bppdescriptions

0 26.50 30.1 33.82 35.58 35.89
1 26.33 30.06 33.69 35.19 35.42
2 26.30 29.70 32.46 33.42 33.55
3 26.00 29.22 31.84 32.79 32.94

Table 3 shows average PSNR and standard deviations
for Lena image in different lost descriptions and bit rates.
As you compare Table 3 and Table 2, it can be observed
that PSNR values are higher than in Table 2. The rated of
PSNR decrement are lower than Table 2. For better un-
derstanding, rate-distortion plot is presented in Fig. 11.
It is obvious that at every bit rate, MSE values of pro-
posed method are much lower than [23] and sustainable
even descriptions are lost.

In Fig. 12, the Lena image is reconstructed with only
one received description (7 descriptions lost) in 0.5 bit
per pixel. Comparing with Fig. 7 there is obviously no
blocking effect, since the wavelet was used.

4.3 Error concealment using MDC and LOT

One of the benefits of LOT is that it has no blocking
effect. Due to that, LOT is able to produce good im-
age reconstruction quality even at low bit rate (around
0.1 bpp).

At high bit rate (somehow more than 2 bpp), the qual-
ity of reconstructed image is saturated and does not im-
prove so much.

Nevertheless, in other transforms such as DCT and
wavelet when bit rate increases (more than 2 bpp) the
quality also increases.

It was found that in low capacity channel LOT method
performs better than the others. Block diagram of this
method is presented in Fig. 13. Again Lena image is down-
sampled to four subimages then lapped orthogonal trans-
form applied to them and quantized and coded through
the channel. At the receiver side inverse of this process
utilized and if some of the descriptions have been lost
by taking average of received descriptions lost data can
be reconstructed. In Table 4 average PSNR and standard
deviation for Lena image in LOT method are shown.

As it is obvious from 2.66 bpp to 4.8, the PSNR values
do not change so much. Even so, in very low bit rate
such as 0.11 bpp the PSNR value is high. In Fig. 14,
reconstructed image at 0.11 bpp with 3 lost descriptions
is shown. As illustrated there is no blocking effect and
high PSNR values are achieved at low bit rates. In Fig. 15,
reconstructed image in 1 bpp with 3 lost descriptions is
presented. In Fig. 16, rate-distortion plot of Table 2 and
4 is shown. At low bit rates MDC-LOT has the smallest
MSE when compared to [23]. By increasing the bit rate
from 2 bpp to 4.8 bpp, the MSE does not change much
as shown in Fig. 16.

This method is applied for house 512× 512 pixel grey
level image. In Fig. 17 the original image is shown. In
Table 5 the average PSNR in different number of lost
descriptions is presented. In Fig. 18, the house image is
reconstructed with one received description in 0.1 bpp.
Figure 19 shows the rate-distortion plot for house image.

In Fig. 20 rate-distortion of three methods with Lena
image are illustrated in one plot. As it is obvious the in
low bit rates MSE of MDC-LOT is lower than the others
which means it has high performance in low capacity
channels.

5 CONCLUSION

Combining MDC with LOT for source coding is an effi-
cient way to eliminate redundant data and conceal errors
accrued in channels. LOT is one of the transform cod-
ing methods that can map pixels of correlated image to
uncorrelated symbols in transform domain. Unlike DCT,
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LOT has no blocking effects in the reconstructed images,
and this characteristic can make the image more vivid.
Due to use of MDC with LOT, MSE values of recon-
structed image are very low in low bitrates but combining
other transform codings such as DCT and wavelet with
MDC can not have that much efficiency in low bit rates.

So this method is useful in low capacity channels.
In addition, in proposed methods by losing descriptions
PSNR values are decreased little by little and standard
deviations of reconstructed descriptions are very small.
Finally, from results it is obvious that not only proposed
methods have high PSNR values but also have high sub-
jective evaluation quality in low bit rates.
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