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CRITICAL REVIEWS OF LOAD FLOW METHODS
FOR WELL, ILL AND UNSOLVABLE CONDITION

Amidaddin Shahriari — Hazlie Mokhlis — Ab Halim Abu Bakar *

This paper presents a critical review of Load flow methods in well, ill and unsolvable conditioned systems. The comparison
studies deals with multiple load flow solution (MLFS), second-order load-flow (SOLF) and continuation load flow (CLF).
The ability of theses method to return from unsolvable solution to a solvable solution in load flow analysis is analyzed and
discuss thoroughly. Special attention is given to the problems and techniques to provide optimal recommendations of the
parameters that are used in these load flow methods. A part of the reviews, this paper also presents the comparison of
numerical result using different type of aforesaid load flow methods for well and ill-conditioned systems.
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1 NOMENCLATURE

MLFS Multiple Load Flow Solution
SOLF Second Order Load Flow
CLF Continuation Load Flow

NR  Newton Raphson

FDLF Fast Decoupled Load Flow

X Vector of uncontrolled (dependent) variables

Y Vector of controlled (independent) variables

F Vector function of load flow

AX  Correction value vector

So Optimum solution point

A Modification coefficient of correction value vector

a, 3,7 coefficient relevant to dependent and indepen-

dent variables
Function of nonlinear inequality constraints

G
W Function of nonlinear equality constraints
U Control variable of independent variables
7 The multiple load and generator powers
T Consists (X,Y) and € R

K Modified vector function of load flow

AS  Step-length control in Continuation Load Flow

2 INTRODUCTION

The calculation in obtaining the steady-state condition
of powers and voltage at various buses in power system is
known as Load Flow (or Power Flow Studies). These stud-
ies are of the utmost importance and frequently provide
the starting conditions for other power system analysis
such as transient stability, fault analysis and contingency
analysis. Load flow analysis also is used intensively in the
planning of a new power system network or expansion of

existing power system network. Nowadays, load flow anal-
ysis is carried out almost exclusively by digital computers
and the equations defining the problem are solved by spe-
cial numerical techniques, which have been developed to
suit the special structure of the problem [1,42]. Due to
the important of load flow, many studies in improving
load flow solution have been conducted [1, 6,18, 35].

In the past, the studies in the load flow is more in-
clined to reduce the analysis time through reducing the
iteration number and convergence time [1]. For instance,
in [1] and [2], a fast decoupled method was introduced
with the objective of reducing the analysis time through
simplification of the Newton method equations. How-
ever, as the demand of power increasing in early 80’s,
it was found that the conventional load flow method pro-
duced divergence solution for ill-conditioned system [4, 6].
Generally, ill-conditioning system is a system that has
weakly-interconnected and a high ratios of lines R/X
[7]. Such problem becomes more critical now a day since
power system is operating close to their lower security
limits [15]. As a result, conventional load flow analysis
fails to converge for such system. One of the challenges
for ill-conditioned system is to determine whether non-
convergence of a power flow is due to failure of the load
flow methods or due to infeasible operating point [3,7].

The objective of this paper is to present a critical
review on Load flow methods for well, ill and unsolv-
able condition. From this review, the causes of non-
convergence will be discussed. The review will cover the
multiple load flow solution method (MLFS) based on the
second order load flow (SOLF) solution in polar coor-
dinates [6,10,20] and the continuation load flow (CLF)
method for well, ill and unsolvable-conditioned cases re-
spectively [13,14,16]. The conducted reviews in this pa-
per is part of on-going research in a power system group
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at University of Malaya to develop a new robust load flow
method based on second order load flow to solve well, ill
and unsolvable conditioned system for a practically large
scale power system network. It is expected that the new
model has the following features; (a) improve convergence
characteristic (b) reduce computational process of load
flow analysis.

This paper is organized as follows. In the following sec-
tion, existing load flow methods in literature are describes
briefly. Section 4 presents the mathematical equation in-
volves for the first and second order load flow analysis.
Sections 5 and 6 describe the methods on multiple so-
lutions and continuation solutions respectively. Section 7
presents the numerical analysis result that has been car-
ried out for 13 bus ill-conditioned system and standard
IEEE 30 bus system. It was found that the SOLF ana-
lytic geometry has a better performance in convergence
time and mismatch error as compared with the Newton
Raphson (NR) in well and ill conditioned system. Finally,
conclusion of this paper is presented in Section 8.

3 OVERVIEWS OF LOAD FLOW METHODS

In general, load flow methods can be classified into
four main types as follows:

(1) Conventional load flow method,
(2) Second-Order load flow method,
(3) Multiple load flow method,

(4) Continuation load flow method.

These classifications are based on their purposes in solv-
ing different problem condition that will be described in
the following section.

3.1 Conventional load flow methods

The earliest computational load flow method was
based on Gauss-Seidel method. However, it has poor con-
vergence characteristic and high iteration number. Slow
processing speed of a computer at that time also con-
tributed to slow computation time of Gauss-Seidel. Lat-
ter, the Newton Raphson (NR) method was introduced
to improve convergence problem of Gauss-Seidel method
[1]. In most typical networks, NR converges within five to
six iterations. Despite of that, NR method is only widely
accepted in industry when sparsity technique was intro-
duced in 1960s to solve a large scale matrix with high
number of zero values [1,4]. This technique managed to
overcome computer memory size, which is low at that at
time [31].

As power system network size increases dramatically
in the early 70’s with the increasing demand of energy,
NR method started to lose ability to converge fast. Thus,
studies at that time were conducted to propose a load flow
method that able to converge fast. These issues were ad-
dressed by Stott and Alsac when they introduced Fast De-
coupled Load Flow (FDLF) method [l], which enhanced
computational speed. This method is simplification of NR,
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method by considering the decoupling characteristic be-
tween active power with voltage, and reactive power with
angle. It is well-known for its fast convergence characteris-
tic and required minimum memory storage. Nevertheless,
when reliability and accuracy, rather than speed of re-
sponse, was a concern, or when the decoupling principle
did not hold, the NR method was the preference [2,40].

Both methods however, suffered slow convergence
or diverge when applied for ill conditioned case. IlI-
conditioned case occurs when a system with high ratios
of lines R/X , weak interconnection system [2] or heavy
loading at some buses [12,36]. All of these factors af-
fected the stability of both methods. For instance, when
a system loading approaches critical loading, sparsity of
the Jacobian matrix decreases and the Jacobian matrix
tends to become singular [3,39]. Hence, the possibility of
having no solution increases for such system [7,17]. This
issue has led to the development of alternative methodolo-
gies, based on the NR iterative scheme such as quadratic
format [34].

3.2 Second-order load flow methods

At the end of 70’s, second-order load-flow (SOLF)
methods were proposed [5,20]. Second order load flow
technique is based on the Taylor series expansion in a
polar or rectangular coordinate form. Different from NR
method that considered only first order of Taylor series
in its formulation, SOLF is considering the second order
term of the Taylor series.

In many cases, this second order required lesser iter-
ations, had better convergence characteristics than con-
ventional NR technique [20]. Moreover, it had also been
shown that the elements of the second order coefficient
matrix need not be stored separately [20].

Rectangular forms of second order method as a fast
load flow method retaining nonlinearly was introduced
in 1978 by Iwamoto [5,25].The proposed method used a
fixed or constant matrix throughout the iteration process
[33]. Due to its fastness, the method had been used for
power system training simulators in Japan [18].

3.3 Multiple load flow solutions methods

In the early 80’s, multiple load flow solution (MLFS)
methods were proposed [6,7]. These methods were pro-
posed to address the problem of power system that oper-
ates very close to a critical loading condition (voltage col-
lapse) [32, 37, 38]. Such problem is unavoidable due to the
increasing demand of power supply without expansion of
transmission facilities. Under this situation, conventional
load flow of Newton methods most likely diverge. Diver-
gence can also occur when the initial estimation is far
from the actual solution [22,23]. Thus, it is very crucial
that a computationally efficient technique be developed to
quantify the degree of un-solvability, and also to provide
optimal recommendations of the parameters that need
to be changed in order to return to a solvable solution
[19,24, 28].
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Bus voltage

Predictor
(continuation load flow solution)

Corrector
(continuation load flow )

Critical point
saddle-node bifurcation

Unsolvable case ——_~

Load

Fig. 1. Sequence of calculation in a multiple load flow solution a
continuation load flow method [16]

In general, the MLFS methods used a predictor to de-
termine the best slope that will lead convergence that
is from critical initial value to safe margin zone of volt-
age stability at every iteration as shown in Fig. 1 of
voltage-load curve. At the same time, without changing
any control variables. Among these methods, Iwamoto
and Tamura [6] presented the robust non-divergent load
flow methods in well and ill conditioned based on the
SOLF Iwamoto method [5].

3.4 Continuation load flow methods

At the end of 80’s, the continuation load flow (CLF)
was introduced to encounter problem of highly stress con-
tingency situation in a bulk power system [8,14]. Such
problem causes ordinary load flow methods fails to con-
verge. In general, the CLF methods work by modifying
the gradient curve of MLFS methods through a correc-
tor as shown in Fig. 1 [16]. The corrector is formulated by
changing/controlling the equation related to load demand
in order to ensure continuity of power flow solution.

In this type of methods, parameterized load flow equa-
tions are solved and the parameter provides an indication
whether the system has a solution or not [21]. On other
meaning, maximum loading condition of a system as a
saddle-node bifurcation is determined by CLF [11, 13, 16].
Furthermore, Fig. 1 shows the unsolvable case where the
power flow solution does not exist. In this case, power sys-
tem is becomes more heavily loaded and caused voltage
drop. In this situation, power flow equations have no real
solution [13,27]. The only way to ensure convergence is
to introduce compensating devices such as FACT devices
[27].

These methods provide optimal recommendations of
the dependant and independent variable of power sys-
tem to return respectively from ill-conditioned to fea-
sible region and unsolvable solution to infeasible region
[9,11,29].

4 COMPARISON BETWEEN
FIRST AND SECOND ORDER OF
NEWTON RAPHSON METHOD

4.1 Theoretical Background

The theoretical background of first and second order
Newton Raphson formulation is discussed in this section
to show its capability and limitation. The power flow
problem of an electrical power system can be written as
a set of nonlinear equations in the following form

F(X,Y)=0 (1)

where

X — vector of uncontrolled ( dependent) variables;
Y — vector of controlled ( independent) variables;
F — vector function of load flow.

For solving (1), a numerical iterative technique needs
to be used. The 4" iteration of classical NR algo-
rithm based as the first order Taylor series, expansion
of F(X,,Xy) for two variables, ie voltage amplitudes
and phases as dependant variables at buses, are given as
follow

F(X, +AX;, Xj + AXp)—F(X;, X;)

— [AXG’X(;F}Z[AX;,AXZ} ~0 (2)
Newton’s method is very reliable and extremely fast in
convergence in well conditioning system. In this condi-
tion, the power flow solution exists and is reachable using
a flat initial guess (eg, all load voltage magnitudes equal
to 1.0 per unit and all bus voltage angles equal to 0.0
radian). This case is the most common situation. Thus,
numerical Newton method can approach to an optimum
point. By starting from an initial guess (X_0, Xbg) the
series converges towards solution point in the last itera-
tion. The algorithm stops if the variable increments are
lower than a given tolerance or the number of iterations
is greater than a given limit.

The most important fact in (1) is that only the second
derivative exists due to the power flow equation involves
two variables ie bus voltage and angle and therefore third
order term does not exist. By neglecting the high order
terms of (1), (2) is an approximation. However, (1) is
a quadratic function with respect to the uncontrolled
variables [11,13, 22, 26]. By considering second order term
of Taylor series in the Newton Raphson method, SOLF
can be expressed as follows

F(X! 4+ AX!, X] +AX}))—F(X., X})

- [AXa,XbF} ’ [AXCZ“ AXﬂ

S 1AX5AX() T [8%, , F] [AXE AX{] =0, (3)
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Fig. 2. Comparison of AX and performance of the SLOF to approach optimum point

4.2 Advantageous of SOLF method

In order to show the advantageous of SOLF over or-
dinary NR method, Fig. 2 is considered. These figures
illustrate a quadratic function F(X) with respect to un-
controlled variable X for SOLF and NR methods respec-
tively. The main quadratic function F(X) is presented in
part C of Equation (9).

The paramount distinction of SOLF to NR method is
apparent in (1). Since, (1) is quadric function with respect
to [AXa, AXDb]. Therefore, a pair of the correction value
indeed exists at each iteration that is given.

X, = AX; + Xo, (4)
X =AXo+ Xo. (5)

By having two pair of correction values, the chances of
obtaining the new correction value X| that can be greater
than X exists. Therefore, as can be seen in Fig. 2 (a),
the process towards optimum solution point (maximum
and minimum) in SOLF could be faster in as compared
to NR method.

Second advantage of SOLF is on its capability to ad-
dress ill conditioned system. Under this condition, power
system operates close to a critical loading (voltage col-
lapse point). As a result, the determinant of Jacobain
matrix is zero (singular Jacobian matrix). However, the
zero value does not indicate that the solution is approach-
ing an optimum or stable point (voltage stability). In fact
it is led to unstable point, which is a saddle point, as il-
lustrated in Fig. 1. For detecting saddle point, the second
derivative is necessary. Since the SOLF consist of the sec-
ond derivative, it is able to recognize this unstable point.
Let us, define the second derivative of F(X) respect to
X in optimum points in Fig. 2 (a) as

FI(X +AX) — F'(X)

i .
F’(X) =1lim Ay
o PO+ AX) —0
= lim AX
1

~——F' ~ ! .
NAXF(XJrAX) Ex FY(X+AX). (6)

Respectively, positive and negative sign of (6) are local
maximum and minimum of F(X) at X . The performance
of this issue in load flow is corresponding to the Hessian
matrix operation [19, 25]. Furthermore, if the Hessian has
both positive and negative of Eigen values then, (X,, X3)
is a saddle point for (1) [16]. Otherwise the Hessian test
is inconclusive.

The particular difficulty of SOLF is to calculate of the
correction value at each iteration. The quadric matrix of

[AX fAXgQ} cannot be solved in straightforward man-

ner as same in NR method. For obtaining [AXa;, AXb;]
a solution of without excessive computer (3) is modified
as follows

F(X,+AX}, X{ + AX})—F (X}, X})
- % [AX], AX]] T [A2X,, X, F] [AX], AX]]
= [AX,, XoF][AX], AX]] . (7)

The main difference between SOLF and NR solving
algorithm is apparent in obtaining the [AX;, AXlﬂ . In
the SOLF, the principal is based on right hand side of
equation (7). Indeed [AX;,AXQ at iteration 7 is de-
termined by [AX:™1, AX;7'] the left hand side of the
equation (7).

The first SOLF’s methods in polar and rectangular co-
ordinate used Gauss-Seidel methodology as same as equa-
tion (7) [5,20]. The authors in [6] presented rectangular
coordinate of SOLF based on the fixed Jacobian method.
The drawback of this method is not applicable for real
time analysis since the Jacobian matrix needs to be mod-
ified frequently. It means, under this condition each of
load flow solution represents a different system in term of
its topology and/or status of its regulated buses.

As shown in [15], polar coordinate form of the SOLF
[20] provides faster and less requiring storage solution. In
addition, the SOLF based on polar formulation performs
more reliable that is particularly apparent in a highly
stressed system [15, 18]. The set of second terms equations
for power mismatch in the SOLF polar form contains
twenty elements that each the active or reactive power



148 A. Shahriari — H. Mokhlis — A. H. A. Bakar: CRITICAL REVIEWS OF LOAD FLOW METHODS FOR WELL, ILL AND ...

Stability point

First initial point

Inequality

Stability point .
yp constraints surface

E  Critical point
(saddle bifurcation point)

F
Unsolvable point

Fig. 3. Illustration of solid geometry of (8) respect to (X,Y) of
bus k

The correction vector
of the SLOF method

The correction vector
Xb of the NR method

Xa

Fig. 4. The contour form of supposed solid geometry of (8) respect
to X,Y) for bus k

mismatch include ten elements. The numerous numbers
of these elements drives calculation of second term ma-
trix very complicate. This paper follows and modifies the
SOLF in [20] that neglects the some of these elements
that uses in FDLF model. However, the effect of exact
polar coordinate form of the SOLF is not being explored
yet.

4.3 Convergence characteristic of first and sec-
ond order Newton method in ill conditioned
system

Suppose a load flow equation (1) for a bus k in the '8
iteration is given as follows

Flz( ;kvXZka ;kaYLZk):O (8)

Respectively X,, Xp,Y,,Y,) € R™ correspond to real and
imaginary of voltage bus amplitude and injected bus ac-
tive and reactive power. A quadratic function for bus k
is given by [11,13, 22]

aX?+BX +v=0. (9)

The solution of (9) is a pair of bus k voltage at every
iteration. From observation of power flow operation in
steady state mode, power system operates as same as
fixed point theory. It means the trajectory of studied
bus voltage (X) is fixed in optimum or concave point
[19,28]. For simplification of bus k description geometry,

convex form is supposed instead of concave form [34, 39].
According to this hypothesis, solid geometry of (8) can
be illustrated in Fig. 3.

Suppose, our initial guess or first operating point is
at F(Xa()k’Xbok): C, as shown in Fig. 3. By using the
SOLF and NR in polar coordinates, after several itera-
tions, two solutions A and B should be located proxi-
mate vector |AX?|. Exact and optimum solution of bus
k is considered at B. The principal issue is that how to
reach solution B, while load flow calculation is converg-
ing to solution A. If solution at B exists in extension
line vector |[AX?| that crosses point at A, by using the
SOLF can approach to solution at B that is shown as
A — B segment line as illustrated in Fig. 4. The Fig. 4 is
correspondent to the contour form of Fig. 3.

This is because, the Newton method performance is
sensitive to the behaviors of the load flow functions and
hence to their formulation. The more linear they are, the
more rapidly and reliably Newton’s method converges.
On the Other hand, non smoothness, ‘e, humps, in any
functions of (8) in the region of interest can cause conver-
gence delays, total failure, or misdirection to a non useful
solution. The variation of load flow function is correspon-
dent to changing of power system topology from voltage
and system frequency stability (well) to instability con-
ditioned such as voltage collapse.

The ill conditioned system is due to the fact that the
zone of the power flow solution is far from the initial
guess. But, the load flow equations have real solution.
The ill conditioning is occurred by adding some equal-
ity and inequality constraints as variables and functions
to load flow equations that should be satisfied coinciden-
tally. Therefore, a set of nonlinear inequality and equality
constraints can be given as [28]

G(X,Y,U) §07
W(X,Y,U)=0.

U is control variable of independent variables that in-
cludes @-limit violation, generate outage, newly-turned
on generator and so on. Figure 3 depicts a supposed typ-
ically system constraint as approximately flat surface.
The geometric concept of supposed surface performance
is to decline the purpose solution point A to point D.
Moreover, operating power system close to its security
margins that occurs in heavy loaded in planning applica-
tion and contingency analysis leads system to unsolvable
cases. This operation is that by increasing load demand,
point A, forced to locate in the boundary region, accord-
ingly by becoming more highly stress is dropped in un-
solvable region that are supposed at points E and F in
Fig. 3 respectively . Nevertheless, the number of situa-
tions that the load flow equations have no real solution
increases. As was mentioned in previous section ,to ap-
proach solution at B is accomplished under concept of
Multiple and Continuation Load flow model, as, the op-
timal direction, to move in dependent and independent
variable space to return to power flow solvability zone
[13,14,17].
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A

Fig. 5. Illustration of scalar cubic of (13) respect A

5 MULTIPLE LOAD FLOW
SOLUTION METHOD

Multiple Load Flow Solution (MLFS) methods was
presented, as predictor, check best slope from a criti-
cal point from critical initial value to safe margin zone
of voltage stability at each step to be convergence with-
out changing control (independent) variables [6, 7, 30]. On
other meaning, the predictor is to adjust the size of vec-
tor [AX;] and specifying optimal value to takes a step to-
wards the best stability solution in ill conditioned system,
ie solution at B in Figs. 3 and 4. Hence, the modification
of step update is formulated as follows

X = X' NAXT,
Rewriting (3) with the scalar multiplier gives
F(X,+AX], X) + AXp)—F (X, X})—
N[AX,, X,F] [AXE, AX]] -

(12)

%)\f [AX, AX]] T [A%X,, X,F][AX., AX{] = 0. (13)

By plotting scalar cubic of (13) as objective function (L)
that is given in (14), respect to A is shown the practi-
cally a pair concave steady state point (local minimum)
and a saddle point (local maximum) that respectively cor-
respond to A, B and FE in Fig. 3.

L=|F(X'+AX" X'+ AX")-F (X", X")-
N[AX,YF]' [AXT, AY] -
il i i1 T [A2 i i i
A 2[AX A [AX Y F][AXYAY]| L (14)

If a system has a pair of near solution, then according
to Fig. 5, the degree of polynomial of (14) differentiation
respect to A becomes three. In this situation three real
roots, are exist for JLOA. In ascending order to roots,
suppose A1, Ay and A3. That are correspond to A, FE
and B as concave stability solution for A and B and
bifurcation solution point E as well as instability solution
in real power system.

MLFS method is a nonlinear programming problem
that based on the optimal multiplier [11,39]. Although,
several methods were presented that deal with MLFS, but
most of them the computation of MLFS methods require
more analytic effort [9,10,12,21]. Another difficulty for
MLFS is apparent in defining maximum loading level that
system can supply for unsolvable case [41].
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6 THE CONTINUATION
POWER FLOW METHOD

Continuation load flow Load (CLF) was introduced to
determine the voltage collapse as it main objective. By
doing this, the boundary zone of maximum active and
reactive could be detected and hence power load demand
could be controlled. In order to achieve this requirement,
gradient curve of MLF needs to be modified as shown
in Fig. 1. Typically, it means that the loading level of
the network is too high then CLF can define correspond
loading level and generator power. A simple method for
inserting load parameter is to define as constant power
load model [15,16,41].

The modified and depended (1) on scalar parameter p
is

K(T, 1) =0 (15)
where T € R that T consists of (X,Y) and p present

the multiple load and generator powers
0< B < Ueritical - (16)

Differentiating (16) at a generic steady state point is as
follows

OK(T.p) OK(T.n
dT dp=0. 1
o7 g 0 (17)
Then, corrector step is given by
dT K(T K (T, )=t
du ou oT

By adding the correction value to initial solution, next
approximate solution is expressed
dT
K(T+AT,M+A;L):K(T,;L)+@A;L. (19)
From (19), it is apparent that the used optimization
method in CLF is based on the decent gradient method
[34].

In order to apply a locally parameterized continuation
technique to the power flow problem, a load parameter
must be inserted into the equations. As there are many
ways this could be done, only a simple example using
a constant power load model has been be considered in
this paper. Since, predominance of the CLF for unsolvable
cases is obvious in remaining well conditioned and around
the critical point by getting the part of the studied bus
voltage versus its load or P-V or Q—V curve in Fig. 1 or
in Fig. 5 to define maximum loading level. In this sense,
it is considered as a constrain equation of the step size
along the length of the got part of (15) as follows

(T; — T;(critical)? + (u; — pi(critical)? = AS?. (20)

where AS a step-length control to trace the new solution
on the part curve to find critical point (voltage instabil-
ity solution point). In geometrically concept, to modify
path of convergence in point B from C-D-E-B, instead
of the path of A-D-FE-B. Furthermore CLF is used to de-
termine peak load demand as boundary region between
ill conditioned and unsolvable region [35].
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Fig. 6. The line diagram of 13 bus ill-conditioned system

Table 1. The performance of the NR method for solving IEEE 30

Iteration CPU time(s) Max error
1 0.25 1.88001
2 0.281 0.0120031
3 0.328 0.00109039
4 0.356 0.00014524

Table 2. The performance of the SOLF method for solving IEEE 30

Tteration CPU time(s) Max error
1 0.156 1.88001
2 0.188 0.012005
3 0.234 0.00107524
4 0.266 7.94985e-09

Table 3. The performance of the SOLF method for solving 13-bus
ill conditioned system

Iteration CPU time(s) Max error

1 0.047 1.00203
2 0.078 4.36341
3 0.094 3.00225
4 0.109 0.905509
) 0.125 0.405434

7 THE CONTINUATION
POWER FLOW METHOD

For testing the NR, SOLF in polar coordinate and the
CLF method, the IEEE 30 bus test system and 13bus ill-
conditioned system are used. The NR, SOLF and CLF
were written in C++ and the analysis was done over
PC with the specification of Dual-Core AMD Opteron,
2 GHz, 2 GB RAM. For well conditioned, the IEEE 30
bus system is used to examine the effect SOLF in polar
coordinate on the convergence time execution and the
convergence mismatch. Tables 1 and 2 show the CPU
time and maximum power mismatch in every iteration
for the NR and SOLF respectively.

It can be noted that the CPU time of computation
for each iteration in SOLF is faster than NR method.

Thus, the SOLF is converging faster than NR method.
It can also be seen that the mismatch vector for SOLF
in every iteration is smaller that NR method. This shows

that SOLF is more accurate load flow model as compared
to NR method.

The 13 bus ill-conditioned system is depicted in Fig. 6
. This system is considered ill-conditioned because of cer-
tain radial system type, the heavy buses loading, the po-
sition of the slack-generator and the two series capacitors.

These characteristics forces jacobian matrix in load
flow becomes singular. Therefore, eigenvalues of the stud-
ied ill- conditioned system’s jocobian matrix are very sen-
sitive to small changing in its variable state (dependent)
variables. The corresponding sparse jocobian matrix is
depicted in Fig. 7. Also, solid geometry of sparse joco-
bian matrix as conical in diagonal elements of jocobian
matrix is shown in Fig. 8.

Under this condition, ratio of maximum eigenvalue to
minimum eigenvalue as condition the number of the ja-
cobain is very high, in the studied ill system the ratio is
1000. This leads to round off error agglomerations dur-
ing the course of iterative solution and may give rise to
oscillations or divergence of power flow solution.

The tests result for the 13 bus-ill conditioned system
tested using SOLF is given in Table 3.

This is clear from the result that for converging, ap-
proached mismatch value in the last iteration is far away
from 0.0001 (a common mismatch error). Thus, SOLF
and NR fail to converge.

For returning the ill conditioned system to solvable
solution, the CLF has been used. Continuation power
flow defines active and reactive power limitations to con-
trol buses angles and voltage amplitude power line flow.
Therefore, Bus 13, in vicinity of heavy load demanding
in Bus 12 and series capacitor in line 13-8, is used to il-
lustrate the effect of the CLF on critical point as voltage
instability for Bus 13. The effect of CLF is illustrated in
Fig. 9.

As can be seen by increasing the reactive power de-
mand at Bus 13, the voltage at Bus 13 is also increas-
ing. It means the CLF method try to increase and main-
tain voltage amplitude at Bus 13 to acceptable level of
ill conditioned system. However, from 1.6 p.u of reactive
power, the voltage drop significantly. At 1.8 p.u of reac-
tive power, the voltage becomes V' = 0.892 p.u. After this
point, the system leads to unsolvable condition. Thus, by
knowing this critical point, we can ensure that the load
flow will converge.

7 CONCLUSION

In this paper, first order Newton Raphson and second
order Newton Raphson load flow methods, were reviewed
in term of convergence characteristics and mismatch vec-
tor, in well and ill conditioned system. From the reviewed,
it was shown that second order load flow able to detect ill
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Fig. 9. The performance of CLF in defining critical point of Bus 13

conditioned problem during load flow process. However,
convergence is not guaranteed for ill conditioned system.
Latter, the reviewed of multiple load flow method shows
that the method able to convergence for ill conditioned
system by using a predictor. However, the predictor only
able to direct the solution up to a critical point of solvable
zone. For unsolvable condition, Continuation load flow
has the advantage to lead the system to solvable condi-
tion by providing the maximum load demand allowable
for ill conditioned system.
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In order to study the SOLF effectiveness the method
has been tested using IEEE 30 bus test system and 13 bus
ill-conditioned system. It was found that SOLF is more
superior to NR method in term of convergence and solu-
tion time. However, the test shows that SOLF diverges
in ill conditioned system. In this case, CLF need to be
used to determine critical point for solvable solution for
ill conditioned system.
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