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ADAPTIVE FEEDBACK LINEARIZATION CONTROL
FOR ASYNCHRONOUS MACHINE WITH NONLINEAR
FOR NATURAL DYNAMIC COMPLETE OBSERVER
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This paper studies the nonlinear adaptive control of an induction motor with natural dynamic complete nonlinear
observer. The aim of this work is to develop a nonlinear control law and adaptive performance for an asynchronous motor
with two main objectives: to improve the continuation of trajectories and the stability, robustness to parametric variations
and disturbances rejection. This control law will independently control the speed and flux into the machine by restricting
supply. A complete nonlinear observer for dynamic nature ensuring closed loop stability of the entire control and observer
has been developed. Several simulations have also been carried out to demonstrate system performance.

K e y w o r d s: f feedback linearization, adaptive control, parameter estimation, nonlinear observer (NLO), induction
motor (IM)

1 INTRODUCTION

The nonlinear control based on the technique of
linearization within the meaning of the input-outputs
proved reliable on the level of the control of the asyn-
chronous machine [2–7]. It was demonstrated that the
nonlinear controller is adept nonlinearities and maintain-
ing its performance in a wide operating range long and as
long as the machine parameters are not changed. How-
ever, it completely loses its performance when the model
of the machine is subject to uncertainties in the parame-
ters. In the case of the induction machine, the uncertain
parameters are mainly the stator and rotor resistance
(depending on temperature), inductors (which depend
on the level of saturation), the moment of inertia and
load torque (which are difficult to quantify). In addition,
by examining the model, one can notice that two of these
parameters fall in a linear fashion in the model (resis-
tance and load torque) while the other two returned from
a nonlinear fashion (inductors and timing of inertia). At
first, researchers tried to solve this problem by develop-
ing algorithms for identification of uncertain parameters
that tend to change during operation [8]. However, de-
spite the results obtained, they were discarded because of
their complexity. Parallel to this, many researchers have
been developing methodologies for adaptive nonlinear lin-
earization technique combining with adaptive methods
[9–14]. All these methods have led to satisfactory results,
but they limit the model structures and how they depend
on uncertain parameters. Indeed, most methods proposed
in the literature are for the case where the uncertain pa-
rameters of a linear fit in the model [15]. The algorithm

that we propose to apply in our case is the one proposed

in [1]. This algorithm is not limited to the case where the

uncertain parameters of linear fit in the model but it also

applies to models with uncertain parameters returned

from a nonlinear fashion. In this article we present the

principle of the linearization adaptive input-output in-

tended for the control of the asynchronous machine or

the parameters return in a linear way in the model of the

machine (resistances and the torque of load). We then

used a nonlinear observer of flux and current. The per-

formances of the nonlinear controller adaptive will be

discussed by digital simulation.

2 ADAPTIVE NONLINEAR CONTROL OF IM

In this section, one carries out an adaptive nonlinear

order which ensures the regulation the speed and the

flux of the asynchronous machine as well as decoupling

between the latter. In this part, one will hold account

only parameters which return in a linear way in the model

of the machine. It is about rotor resistance Rr and the

torque of load TL . To be done, one starts by designing a

controller based on the technique of linearization within

the meaning of the input-output applied to the nominal

model, then one calculation the law of adaptation which

will make it possible to estimate the vector of the dubious

parameters [8, 9].

The dynamics of an induction motor under the as-

sumptions of equal mutual inductances and linear mag-
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netic are given by the fifth-order model.
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We will drop the subscripts r and s since we will only
use rotor fluxes Φrα, Φrβ) and stator currents (isα , isβ ).
Let

x = (x1, x2, x3, x4, x5)
⊤ = (isα, isβ ,Φrα, Phirβ,Ω)

⊤.

Considering the vector of uncertain parameters
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one can rewrite the equations of the asynchronous ma-
chine in the form suggested by
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In order to increase the representation, we omit the de-
pendence on x. the derivatives of the outputs become

ẏ1 = y2 + δ1Lf1h1 ,

ẏ2 = L2

fh1 + δ2Lf2h1 + Lg1Lfh1u1 + Lg2Lfh1u2 ,

ẏ3 = y4 + δ2Lf2h2 , (6)

ẏ4 = L2

fh2 + δ2Lf2Lfh2 + Lg1Lfh2u1 + Lg1Lfh2u1 ,

ẏ5 = Lfh3 + δ2Lf2h3 .

We can make a change of coordinates (diffeomorphism)

using the estimated parameters δ̂ = [δ̂1, δ̂2]
⊤ . The errors

on these parameters are

eδ =

(

eδ1
eδ2

)

=

(

δ1 − δ̂1

δ2 − δ̂2

)

. (7)

Now we introduce the estimated parameters δ̂ in the new
coordinates z

z1 = y1 ,

z2 = y2 + δ̂1Lf1h1 ,

z3 = y3 ,

z4 = y4 + δ̂2Lf2h2 ,

z5 = y5 .

(8)

The system (8) becomes

ż1 = z2 + eδ1Lf1h1 ,

ż2 = L2

fh1 + δ2Lf2Lfh1 +
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Linearizing control, with the estimated parameters, is
given by

(

u1
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)

= D
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(11)
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and

D
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New orders are stabilizing

v1 = −k11(z1 − z1ref)− k12z2 ,

v2 = −k21(z3 − z3ref)− k22z4 .
(13)

Control parameters (k11, k12, k21, k22) are chosen so that
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are asymptotically stable. The matrix gains K1 and K2

are given by (14). Then the tracking error is given by
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Dynamics become
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In the condensed form we have
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3 NATURAL DYNAMICS

COMPLETE OBSERVER

We develop a nonlinear control law with a comprehen-
sive observer. According to [1] we use the complete model
of the machine, which implies a relative degree one and
two of the output. We develop a control law that controls
the torque and flux of the machine (see Fig. 1). We use
an estimator with zero gain observers. The control uses
only quantities estimated.

I0(A)

Controlle

h1ref

h2ref

Usa

Usb

W

Cem

F
2

rIM

Observer

Fig. 1. Nonlinear control with dynamic natural observer n
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3.1 Observer development

The machine model that uses the model with four
streams flux it self particularly well to find a Lyapunov
function which can show the stability of the estimator. We
choose this representation only for easier demonstration
of the stability of the observer. The current estimates
could be obtained easily with a transformation matrix
from invariant flux estimated.

˙̂
X = A2(Ω)X̂ +Bu ,
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[
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We define the estimation errors

e = [e4, e5, e6, e7] . (25)

Let us choose the function of Lyapunov V1 following [1]
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1
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with L−1 positive definite (detL = LsLrσ ; 0 < σ < 1).
This proves the stability of the observer.
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3.2 Control development with observer

We can develop the control law using the observer and
the mechanical equation
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On this model we have the system of tracking errors of
torque and flux following
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By applying the command (30) we obtain the following
system errors stability of the control.
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The Lyapunov function V2 with its derivative along the
trajectories of the system ensures the asymptotic
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1

2

(
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)
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V̇2 = −k1e
2

1 − k2e
2
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We can conclude on the overall stability of the entire
control and observer using Lyapunov function candidate
V with its derivative

V = V1 + V2 , (39)

V̇ = −k1e
2

1 − k2e
2

2 − k3e
2

3 − e⊤
(

L−1
)

e (40)

with V > 0 and V̇ < 0 we can deduce the stability of
the observer and control using a complete model of the
motor and a complete observer.

4 SIMULATION RESULTS

The proposed PI for controlling the speed of IM with
AIOL decoupling and flux NLO was designed for 1.5kw
drive is represented in Fig. 2. We interpret some simula-
tion results with parameter variations of 50% on the rotor
resistance (Rr) and the variation of torque (TL). We con-
duct a comparison of three cases in order to evaluate the
performance of adaptive control with or without the use
of a flux observer, these are:

1) Nonlinear control sets (without adaptation).

This control is developed based on the nominal model
(RrN , TLN) applied to the model characterized by param-
eters Rr and TL show a variation of 50%Rr at t = 2 s
to t = 5 s and a torque variation TL 10N.m equal to
t = (1.5s, 2.5s) and −10N.m at t = (5.5s, 6.5s).
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2) Nonlinear adaptive control.

3) Nonlinear control with adaptive nonlinear observer.

This control law is developed similarly to the pre-

vious one using a robust nonlinear observer flux and

current. We have chosen to adapt the following gains:
Γ = (1000, 1000)⊤ see equation (38), with the weight-

ing Q = (0.005 ; 1 ; 0.001) see equation (35). The results

found are as follows

– According to the Figs. 3 and 4, we noted that despite

the application of the load torque and the rotor resistance

variations, speed and flux return to their initial values

along very short time. We confirm that the speed and

flux perfectly follow their references.

– In the comparison between the fixed nonlinear con-
trol and the adaptive nonlinear control without observer
(case 1 and case 2), we base ourselves on the Figs. 5 to 7
which show the speed,torques and flux. We notice that the
presence of the parametric variations involves a coupling
between flux and torque for the fixed nonlinear control.

- Knowing that the errors of continuation speed are due
to the presence of a variable load torque of 10N.m to
t = (1.5 to 2.5)s and −10N.m to t = (5.5 to 6.5)s, we
note that only the adaptive nonlinear control allows a
good continuation of flux and that it ensures, with effec-
tiveness, the limitation of current.

- Our second comparison between the adaptive nonlinear
control and the adaptive nonlinear control with observer
(case 2 and case 3), shows the interest to adapt the model
used by the observer. The use of an observer allows pri-
marily a better continuation speed, flux and torque (see
Figs. 8–11), then giving a good limitation of the current.

5 CONCLUSION

In this article we developed an adaptive nonlinear con-
trol which takes account of the parametric variations of
rotor resistance and the load torque. The latter makes it
possible to ensure an effective limitation of current.

Theoretically we established a proof of stability of the
adaptive nonlinear control in the case or flux is measured.
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Table 1.

Designation Parameter value

Rotor resistance R 3.81Ω
Stator resistance R 4.85Ω
Mutual inductance M 0.258H
Stator inductance L 0.274H
Rotor inductance L 0.274H
Rotor inertia J 0.031Kgm2

Pole pair p 2
Viscous frict. Coef. f 0.0114Nm/rd/s

Mechanical power P 1.5kW
Nominal voltage V 220V
Nominal current I 3A
Nominal speed n 1450tr/mn

However in reality we must use an observer because flux is
not accessible to measurement. The studies of simulation
made it possible to show a better performance when an
observer of flux is used.

APPENDIX

Induction motor parameters

The induction motor used in this system is a three-
phase, Y-connected, four poles, 1.5Kw, 50Hz, 220 V/3A

type. The nominal values of the motor used in this simu-
lation are given in the Table 1.

Lie derivation estimation

Lf ĥ1 = −p
M

Lr

[

px5(x̂3x̂1 + x̂4x̂2)

+
(

λ+
1

Tr

)

(x̂3x̂2 + x̂4x̂1) + px5K(x̂2

3 + x̂2

4)
]

,

Lf ĥ2 =
2
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[

M(x̂3x̂1 + x̂4x̂2)− (x2

3 + x2

4)
]

,

Lf ĥ3 =
2M2

T 2
r

(x̂2

1 + x̂2

2)− 2M
( λ

Tr

+
1

T 2
r

)

(x̂3x̂1 + x̂4x̂2)

+
2Mpx5

Tr

(x̂3x̂2 − x̂4x̂1) +
2KM

T 2
r

(x̂2

3 + x̂2

4) ,

Lgĥ1 = [−pKx̂4,−pKx̂3] ,

Lgĥ3 = [2RrKx̂3, 2RrKx̂4] .
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