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SOFT DECISION FANO DECODING OF BLOCK CODES OVER
DISCRETE MEMORYLESS CHANNEL USING TREE DIAGRAM
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A novel low complexity soft decision technique which allows the decoding of block codes with tree structure is proposed.
These codes are shown to have a convenient tree structure that allows Fano decoding techniques to be used to decode them.
The Fano algorithm searches through the tree structure of the block code for a path which has the optimal value of the Fano
metric function. When a new candidate codeword is found, an optimality check is performed on it by using the threshold.
If checked successfully, the candidate codeword is the most likely codeword and the search stops. The basic idea of this
approach is to achieve a good error performance progressively in a minimum number of steps. For each decoding step, the
error performance is tightly bounded and the decoding is terminated at the stage where either optimum or near optimum
error performance is achieved. As a result, more flexibility in the trade off between performance and decoding complexity is
provided. Some examples of the tree construction and the soft decision Fano decoding procedure are discussed.
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1 INTRODUCTION

Error control codes enable a decoder to recover from
errors produced by noise in a communication channel. Er-
ror control coding (ECC) algorithms have constituted a
significant enabler in the telecommunications revolution,
the internet, digital recording and space exploration. ECC
is nearly ubiquitous in modern, information based soci-
ety. The last decade has been characterized not only by
an exceptional increase in data transmission and storage

but also by a rapid development in microelectronics, pro-
viding us with both a need for and the possibility of im-
plementing sophisticated algorithms for error control [1].
According to the manner in which redundancy is added
to messages, ECC can be divided into two classes: block
and convolutional. Block codes implement a one-to-one
mapping of a set of k information symbols on to a set of
n code symbols. Convolutional codes offer an approach
to error control substantially different from that of block
codes. A convolutional encoder converts the entire data
stream, regardless of its length, into a single codeword.
Both types of coding schemes have found practical appli-
cations. Historically convolutional codes have been pre-

ferred, apparently because of the availability of soft deci-
sion decoding (SDD) algorithm and the belief over many
years that block codes could not be efficiently decoded
with soft decisions. The main problem is the fundamen-
tally algebraic structure of block codes. Although this
structure allows elegant algebraic decoding techniques to
be applied when hard decisions are made, the reliance on
finite field arithmetic for decoding makes it difficult to ex-
ploit soft decisions. One of the most general approaches is
that of Wolf [2], who showed that any linear block codes

can be represented by a trellis, and that the Viterbi al-
gorithm can therefore be used for soft decision decoding
of block codes. For example, a (7, 4) Hamming code is
represented by the parity check matrix

H =





1 1 0 1 1 0 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1





Its minimal trellis representation based on above par-
ity check matrix is shown in Fig. 1. It is interesting to
note that there is no need to label the branches with the
coded bits. A transition between two states with the same
level corresponds to coded bit 0. Linear block codes have
trellises with a time-varying number of states. The min-
imum number of states can be quite large, for example,
264 for the (128, 64) extended BCH code [3]. Although

a certain permutation of the code achieves 243 states,
which is still exceedingly large for practical implementa-
tions of the Viterbi or Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm [4]. In spite of exponential increase in com-
putational complexity, the soft decision decoding using
trellis diagram performs 2 to 3 dB better than hard deci-
sion decoding (HDD) over additive white Gaussian noise
(AWGN) channel. This much amount of coding gain is
very significant. 3 dB of coding gain can reduce the re-
quired bandwidth by 50% or increase data throughput by
a factor of 2 or increase range by 40% or reduce antenna
size by 30% or reduce transmitter power by a factor of
2. Therefore collectively we can say that coding gain in-
creases the system performance or reduces cost or both
[5]. SDD increases the error correcting capability of the
code by correcting a number of soft errors. This yields an
increase in the coding gain compared to HDD.
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Fig. 1. Trellis representation of a (7, 4) Hamming code

Fig. 2. Tree representation of a binary (n, k) systematic block code

Many good block codes are presently known. Several
of them have been used in applications ranging from deep
space communication to error control in storage systems.
But the primary difficulty with Viterbi and BCJR decod-

ing of block codes is that, even though they are optimum
decoding methods, the promised bit error rates are not
achieved in practice at rates close to capacity. This is be-
cause the decoding effort is fixed and grows with block
length, and thus only short block length codes can be
used [6]. Therefore, an important practical question is

whether a suboptimal realizable soft decision decoding
method can be found for block codes. A noteworthy re-
sult based on this question is described in the following
section. This result of suboptimal decoding will be used
as motivation for the investigation of different soft de-

cision decoding methods for linear block codes and also
for motivation for the development of efficient decoding
algorithms.

2 TREE REPRESENTATION OF

SYSTEMATIC LINEAR BLOCK CODES

We begin by noting that the fixed amount of com-

putation required by the Viterbi algorithm is not always

needed, particularly when the noise is light (or high signal

to noise ratio) [7]. For example, assume that an (n, k) lin-

ear block code is transmitted without error over a chan-

nel. The Viterbi algorithm will still perform on the or-

der of 2min{k,n−k} computations per decoded informa-

tion block, all of which is wasted effort in this case. In

other words, it is sometimes desirable to have a decod-

ing procedure whose effort is adaptable to the noise level.

Sequential decoding using tree diagram is such a type of

algorithm. Sequential decoding describes any algorithm

for decoding channel codes which successively explores

the code tree by moving to new nodes from an already

explored node. The purpose of tree searching algorithms

is to search through the nodes of the code tree in efficient

way, that is, without having to examine too many nodes,

in an attempt to find the maximum likelihood path. Each

node examined represents a path through part of the tree.

Whether a particular path is likely to be part of the max-

imum likelihood path depends on the metric value asso-

ciated with that path. The metric is a measure of the

closeness of a path to the received sequence [8].

Every linear block code can be represented graphically

by means of a tree. The code tree can be treated as

an expanded version of the trellis, where every path is

totally distinct from every other path. Figure 2 represents

general tree representation for an (n, k) systematic linear

block code.

This tree has the following structures [9]:

1. Tree consists of n+ 1 levels.

2. For 0 ≤ i < k , there are 2i nodes at the ith level of

the tree. There is only one node s0 at the zeroth level

of the tree called the initial node (or root) of the tree,

and there are 2k nodes at the nth level of the tree,

which are called the terminal node of the tree.

3. For 0 ≤ i < k , there are two branches leaving every

node si at level-i and connecting to two different

nodes at level-(i + 1). One branch is labeled with an

information symbol 0, and the other branch is labeled

with an information symbol 1. For k ≤ i ≤ n , there is

only one branch leaving every node si at level-i and

connecting to one node at level-(i+1). This branch is

labeled with a parity check symbol 0 or 1.

4. The label sequence of path connecting the initial node

s0 to a node sk at the kth level corresponds to an

information sequence m of k bits. The label sequence

of the path connecting the initial node s0 through a
node sk at the kth level to a terminal node sn at the

nth level is a codeword C . The label sequence of the

tail connecting node sk to node sn corresponds to the

n− k parity check symbols of the codeword.

The generator matrix G of an (8, 4) extended Ham-

ming code with minimum Hamming distance dmin = 4

is given below. This matrix is represented in systematic

form by performing Gaussian elimination with pivoting
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Fig. 3. Tree representation of a binary (8, 4) extended Hamming
code

Fig. 4. Probability distribution function for received symbol yi

over non systematic form.

G =







1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 0 1 1 1
0 0 0 1 1 1 0 1






.

The above generator matrix generates all possible valid
codewords in systematic form. Figure 3 shows the tree
representation of a binary extended Hamming code gen-
erated by G .

3 DECODING WITH THE FANO ALGORITHM

The tree representation of a linear block code can be
used to facilitate Fano decoding. The Fano algorithm
compares paths of differing length when deciding whether
to continue through the tree or to back up and try a dif-
ferent branch without having to examine too many nodes
in an attempt to find the maximum likelihood path. The
decoder examines a sequence of nodes in the tree, starting
with the origin (or root) node and ending with one of the
terminal nodes. The decoder never jumps from node to
node, as in the stack algorithm [10], but always moves to

an adjacent node, either forward to one of the 2k nodes
leaving the present node, or backward to the node leading
to the present node. The metric of the next node to be ex-
amined can then be computed by adding (or subtracting)
the metric of the connecting branch to the metric of the

present node. This process eliminates the need for storing
the metrics of previously examined nodes, as required by
the stack algorithm, however, some nodes are visited more
than once, and in this case their metric values must be
recomputed. The decoder moves forward through the tree
as long as the metric value along the path being examined
continues to increase. When the metric value dips below
a threshold the decoder backs up and begins to examine
other paths. If no path can be found whose metric value
stays above the threshold, the threshold is then lowered,
and the decoder attempts to move forward again with
a lower threshold. Each time a given node is visited in
the forward direction, the threshold is lower than on the
previous visit to that node. This prevents looping in the
algorithm, and the decoder eventually must reach the end
of the tree is taken as the decoded path [11].

Fano algorithm commonly uses a probabilistic branch
metric, namely, the Fano metric, which can be written for
a continuous (or Gaussian) channel as [3]

M
(

rl|vl
)

= − log2

[

1 + exp
(

−4
(2vl − 1)rl

√
Eb

N0

)]

. (1)

where M
(

rl|vl
)

is the branch metric for the lth branch,
Eb is the energy per transmitted bit and N0 is the
one-sided noise power density. For a discrete memoryless
channel (DMC) with a uniformly distributed source and
a crossover probability p , the above Fano metric reduces
to

M
(

rl|vl
)

= log2 p
(

rl|vl
)

− log2 p(rl)−R . (2)

Here, R is the rate of the code in use, p
(

rl|vl
)

is the
channel transition probability of the received symbol rl
given the transmitted symbol vl , p(rl) is a channel out-
put symbol probability. Fanos original selection of this
metric was based on a heuristic argument, and on occa-
sion other researchers/designers have used other metrics
[12].

We assume a binary phase shift keying (BPSK) mod-
ulation, where the bits ci ∈ {0, 1} are mapped to the
transmission bits xi ∈ {+1,−1} corresponding to the re-
lation

xi = (−1)Ci ; i ∈ [1, n] . (3)

After transmission over the AWGN channel, we obtain
the probability distribution depicted in Fig. 4.

We assume that the y -axis in above figure is divided in
to intervals of width δy . In practical systems, this value is
often quantized. In our decoder analysis, the received sig-
nal is quantized to 3 bits, resulting in 23 different quanti-
zation levels, using uniformly spaced quantization thresh-
olds [13, 14]. The block interprets 04 as the most confi-
dent decision that the codeword bit is a 0 and interprets
14 as the most confident decision that the codeword bit is
a 1. The values in between these represent less confident
decisions. Thus a binary input, continuous valued output
has changed to 8-ary DMC. Figure 5 shows 8-level soft
quantized DMC.
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Fig. 5. Binary input 8-ary output DMC

Fig. 6. Typical metric behavior of correct and incorrect paths

We now proceed to a description of the Fano decoding
algorithm by means of a set of rules for calculating the
threshold and for backward or forward translations.
T —◮ Threshold value maintained by the algorithm
∆ —◮ Threshold increment
MF—◮ Path metric of the forward node or next node
MB—◮ Path metric of the backward node
MF ≥ T =⇒ P+ —◮Move forward
MB ≥ T =⇒ P ? —◮Move backward
MF < T =⇒ Visit the previous node
MB < T =⇒ T = T −∆
The path metric at the root node is set at MB = −∞ .

Example. A binary (8, 4) extended Hamming code as-
sociated with the tree in Fig. 3 is used to encode the
information sequence x = (0 0 0 0), resulting in the
codeword

v = 0 0 0 0 0 0 0 0

The codeword is transmitted over the binary input, 8-ary
output DMC with transition probabilities p(r|v) given by
the below table [15]

v

r

04 03 02 01 11 12 13 14

0 0.1402 0.3203 0.2864 0.166 0.0671 0.177 0.0024 0.0001
1 0.0001 0.0024 0.177 0.0671 0.166 0.2864 0.3203 0.1402

The sequence r = 0412041104110404 is received. Error
bits (2nd , 4th , and 6th position) are shown in dark. Using
(2), the Fano metric is computed as follows.

v

r

04 03 02 01 11 12 13 14

0 0.499 0.4892 0.4134 0.0103 -1.2965 -3.6027 -6.571 -9.9543
1 -9.9543 -6.571 -3.6027 -1.2965 0.0103 0.4134 0.4892 0.499

The metrics are scaled by 50/0.499 to obtain integer met-
rics as shown below.

v

r

04 03 02 01 11 12 13 14

0 50 49 41 1 -130 -361 -658 -997
1 -997 -658 -361 -130 1 41 49 50

Some of the possible threshold increments ∆ is calculated
from the relation

∆ =
∣

∣M(11) +M(12)
∣

∣ ≈ 500 , (4)

∆ =
∣

∣

∣

M(04) + · · ·+M(01) +M(11) + · · ·+M(14)

2

∣

∣

∣
≈ 1000 ,

(5)

∆ =
∣

∣

∣

M(11) +M(13)

2

∣

∣

∣
≈ 400 , (6)

∆ =
∣

∣M(11) +M(12) +M(13) +M(14)
∣

∣ ≈ 2150 , (7)

∆ =
∣

∣M(04) +M(03)
∣

∣ ≈ 100 . (8)

For example, from (4) we calculated ∆ ≈ 500 and de-
coding proceeds as follows. The position P of the decoder
is denoted by the binary input sequence corresponding to
the current node in the tree. X is used to represent the
root. We can note the movement of the decoder back and
forth through the tree by following the variation in the
length of the representation for the decoder position. The
results are shown in Table 1.

Here we can note that Fano algorithm corrected three
bit soft errors. We have checked the algorithm exhaus-
tively for all possible combinations of this type of error
pattern and found that Fano decoder corrects all dmin−1
number of soft errors. So the code was able to decode be-
yond the minimum distance and corrected more than one
soft error.

For a particular received codeword, the value of ∆
has an influence on the number of steps required by the
algorithm to perform decoding. A large increment in the
value of ∆ can cause incorrect decoding as has been
indicated in Table 2.

In general, the larger ∆ is, the fewer number of com-
putations are required. Ultimately, ∆ must be below the
likelihood of the maximum likelihood path, and so must
be lowered to that point. If ∆ is too small, then many
iterations might be required to get that point. On the
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Table 1. Decoding steps for the soft decision Fano algorithm

Position Computation Metric Threshold Position Computation Metric Threshold
P &Result M T P & Result M T
X MF = 50 0 0 01010 MB = 142 192 -500
0 MF ≥ T =⇒ P

+ 50 0 0101 MB ≥ T =⇒ P
− 142 -500

0 First Visit 50 0 0101 Not First Visit 142 -500
0 MF = 91 50 0 0101 MB = 141 142 -500
01 MF ≥ T =⇒ P

+ 91 0 010 MB ≥ T =⇒ P
− 141 -500

01 First Visit 91 0 010 Not First Visit 141 -500
01 MF = 141 91 0 010 MF = 11 141 -500
010 MF ≥ T =⇒ P

+ 141 0 0100 MF ≥ T =⇒ P
+ 11 -500

010 First Visit 141 0 0100 Not First Visit 11 -500
010 MF = 142 141 0 0100 MF = −986 11 -500
0101 MF ≥ T =⇒ P

+ 142 0 0100 MB = 141 11 -500
0101 First Visit 142 0 010 MB ≥ T =⇒ P

− 141 -500
0101 MF = 192 142 0 010 MB = 91 141 -500
01010 MF ≥ T =⇒ P

+ 192 0 01 MB ≥ T =⇒ P
− 91 -500

01010 First Visit 192 0 01 Not First Visit 91 -500
01010 MF = 62 192 0 01 MB = 50 91 -500
010100 MF ≥ T =⇒ P

+ 62 0 0 MB ≥ T =⇒ P
− 50 -500

010100 First Visit 62 0 0 NotF irstV isit 50 -500
010100 MF = −935 62 0 0 MF = −311 50 -500
010100 MB = 192 62 0 00 MF ≥ T =⇒ P

+ -311 -500
01010 MB ≥ T =⇒ P

− 192 0 00 First Visit -311 -500
01010 MB = 142 192 0 00 MF = −261 -311 -500
0101 MB ≥ T =⇒ P

− 142 0 000 MF ≥ T =⇒ P
+ -261 -500

0101 Not First Visit 142 0 000 First Visit -261 -500
0101 MB = 141 142 0 000 MF = −260 -261 -500
010 MB ≥ T =⇒ P

− 141 0 0001 MF ≥ T =⇒ P
+ -260 -500

010 First Visit 141 0 0001 First Visit -260 -500
010 MF = 11 141 0 0001 MF = −1257 -260 -500
0100 MF ≥ T =⇒ P

+ 11 0 0001 MB = −261 -260 -500
0100 First Visit 11 0 000 MB ≥ T =⇒ P

− -261 -500
0100 MF = −986 11 0 000 MF = −391 -261 -500
0100 MB = 141 11 0 0000 MF ≥ T =⇒ P

+ -391 -500
010 All forward nodes 141 -500 0000 First Visit -391 -500

are tested. T = T −∆
010 MF = 142 141 -500 0000 MF = −341 -391 -500
0101 MF ≥ T =⇒ P

+ 142 -500 00000 MF ≥ T =⇒ P
+ -341 -500

0101 Not First Visit 142 -500 00000 First Visit -341 -500
0101 MF = 192 142 -500 00000 MF = −471 -341 -500
01010 MF ≥ T =⇒ P

+ 192 -500 000000 MF ≥ T =⇒ P
+ -471 -500

01010 Not First Visit 192 -500 000000 First Visit -471 -500
01010 MF = 62 192 -500 000000 MF = −421 -471 -500
010100 MF ≥ T =⇒ P

+ 62 -500 0000000 MF ≥ T =⇒ P
+ -421 -500

010100 Not First Visit 62 -500 0000000 First Visit -421 -500
010100 MF = −935 62 -500 0000000 MF = −371 -421 -500
010100 MB = 192 62 -500 00000000 MF ≥ T =⇒ P

+ -371 -500
01010 MB ≥ T =⇒ P

− 192 -500 00000000 P = LEAF =⇒ END -371 -500
ց

Successful Decoding

other hand, if ∆ is lowered in steps that are too big,
then the threshold might be set low enough that other
paths which are not the maximum likelihood path also
exceed the threshold and can be considered by the de-
coder. Thus the selection of an optimum ∆ value is very
much crucial.

The primary benefit of this algorithm is that each
correct decision contributes to limiting the amount of
computation that must be performed subsequently. At
the same time, the path metric is providing an indication
of the correctness of earlier decisions. The path metric
through node k is simply

Lk =
k
∑

i=0

Mi . (9)

The threshold increment is chosen such that the path
metric will be increasing in value over a correct path and
decreasing in value over an incorrect path. The typical
metric behavior is shown in Fig. 6.

Although the metric for the correct path may tem-
porarily show large decreases due to channel noise, over a
longer period of time it should be an increasing function.
Also, if a burst of channel noise occurs, the metric on an
incorrect path may increase temporarily making the path
look like a good path, but it will usually start decreasing
when the noise subsides.

The main benefit of the Fano algorithm in comparison
to the stack or Viterbi algorithm is its parsimonious use of
memory. The various partial path metrics are computed
as needed, so they need not be stored. Despite its com-
plexity, when the noise is low the Fano algorithm tends to
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Table 2. Performance of Fano algorithm on a received codeword
as a function of ∆

∆ Number of Correct
decoding steps decoding

100 73 yes
400 32 yes
500 30 yes
1000 36 yes
2150 16 no

decode faster than the stack algorithm. Its drawback is a
certain loss in speed compared to the stack algorithm for
higher rates, but for moderate rates the Fano algorithm
decodes faster than the stack algorithm. It seems that
the Fano algorithm is the preferred choice for practical
implementation of sequential decoding algorithms [16].

4 CONCLUSIONS

A simple, efficient and near optimal decoding scheme
for linear block codes using tree representation is pro-
posed. The equation for obtaining optimum threshold
increment has been defined. It is interesting to notice
that the technique proposed in this paper can actually
be used to decode any linear block codes. Sequential de-
coding schemes have some drawbacks (such as variable
decoding effort) that are well known in the convolutional
decoding context. Since block codes have a finite tree,
the average number of computations and the deviation
are always bounded. Since Fano algorithm does not re-
quire any storage and suffers a speed disadvantage only
on very noisy channels, a typical application for the Fano
algorithm could be applied in automatic- repeat-request
(ARQ) schemes to improve the reliability and through-
put. Although at present decoding complexity seems to
be quite high, however, in return there is potentially much
better performance to be attained. We have observed for
an (8, 4) single bit error correction extended Hamming
code, hard decision decoding corrects only a single bit er-
ror and soft decision Fano decoding corrects any three bits
of soft errors. This in turn results in a coding gain over
AWGN channel compare to HDD. This is to say that,
with soft decision decoding, the transmitted power can
be lowered to hard decision decoding, which translates
into smaller transmit antennas or, alternatively, smaller
receive antennas for the same transmission power.
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