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BROWNIAN OSCILLATORS DRIVEN BY
CORRELATED NOISE IN A MOVING TRAP
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Brownian oscillator, ie a micron-sized or smaller particle trapped in a thermally fluctuating environment is studied. The
confining harmonic potential can move with a constant velocity. As distinct from the standard Langevin theory, the chaotic

force driving the particle is correlated in time. The dynamics of the particle is described by the generalized Langevin equation
with the inertial term, a coloured noise force, and a memory integral. We consider two kinds of the memory in the system.
The first one corresponds to the exponentially correlated noise and in the second case the memory naturally arises within the
Navier-Stokes hydrodynamics. Exact analytical solutions are obtained in both the cases using a simple and effective method

not applied so far in this kind of problems.
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1 INTRODUCTION

More than a century has passed since the explana-
tion of the Brownian motion (BM) and creation of its ba-
sic theory [1–3]. In the works by Einstein, Smoluchowski
and Langevin, this phenomenon was mathematically de-
scribed through stochastic differential equations, in which
the influence of the molecules of a surrounding medium
on the Brownian particle (BP) was depicted as an addi-
tive thermal noise (a fluctuating force) in the equations
of motion for the BP. The ever-present thermal fluctua-
tions essentially affect the motion of small (micron-sized
or smaller) particles. Although the dynamics of such par-
ticles has been studied in an enormous number of works,
it still cannot be considered as fully understood [4]. For
instance, even in the case of the BM in an unbounded
medium the commonly known theory can be applied only
for long observation times since it ignores the inertial
and accompanying memory effects in the particle motion.
With the ongoing trends to miniaturization and interest
to systems at small space and time scales, the investi-
gations of these effects become increasingly important.
Additional problems arise in studying the systems under
spatial confinement. Such situations are realized, eg, for
colloidal particles in optical traps [5]. In several papers
the experiments on a BP confined in a moving harmonic
well have been theoretically described [5–7]. In the case of
a BP in a potential well we speak about a Brownian (or
noisy) oscillator [3]. For a colloidal particle in a solvent
the mentioned inertial effects should necessarily be taken
into account at short times when the expected dynamics
is ballistic. Also at long times the mean square displace-
ment (MSD) of the particle can exhibit an “anomalous”
(different from that in the Einstein theory) time depen-
dence. In the present paper we describe the BM with
memory, using the generalized Langevin equation (LE)

[1, 2]. The application of the Langevin-Vladimirsky rule
[8, 9] allowed us to exactly solve this integro-differential
equation for a Brownian oscillator in a harmonic well in
two important models. First, we consider the case when
the memory kernel in the LE exponentially decreases with
the time. According to the second fluctuation-dissipation
theorem (FDT) [10], such BPs are driven by coloured, ex-
ponentially correlated noise (an Ornstein-Uhlenbeck pro-
cess). In the limit of zero correlation time of this noise
force the obtained solution should agree with the solu-
tion of the standard LE. The next case corresponds to
the so called hydrodynamic memory in the system, when
the memory integral in the LE represents a convolution
of the particle acceleration and the memory kernel that
naturally arises as a solution of the non-stationary hy-
drodynamic (Navier-Stokes) equations for incompressible
fluids [11]. The history of the hydrodynamic BM begins
with the little known work by Vladimirsky and Terletzky
[12], who were the first to discover the now famous long-
time tails of the particle velocity autocorrelation function
(VAF). At the late sixtieth and early seventieth of the last
century these tails have been rediscovered in computer
experiments, and later they have been confirmed theo-
retically and experimentally. This discovery doubted the
commonly accepted view on the microscopic and macro-
scopic properties of liquids as being characterized by very
different time scales, and extended the range of the ap-
plicability of classical hydrodynamics. The hydrodynamic
approach has essentially enriched the classical Einstein
theory valid only for t → ∞ . It has also revealed the lim-
its of its later generalization for arbitrary times (for more
details and references see [13, 14]). Such a generalization
was made by Langevin who proposed the first stochastic
differential equation for the description of the memoryless
BM. In the hydrodynamic theory the LE is modified to
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take into account a possible memory in the particle mo-
tion. In the present contribution we obtain the exact an-
alytical solutions to the LE with hydrodynamic memory
for a free [12, 15] and confined [16] BP. As distinct from
the previous works where the inertial or memory effects
on the particle motion have been taken into account, in
both the considered models the harmonic trap, in which
the BP is placed, can move with a constant velocity. It
is essential that we use a method of the evaluation of
the time correlation functions, such as the VAF and the
MSD, which is much simpler than the approaches used in
the literature so far and is applicable for linear systems
with any other kind of memory.

2 OSCILLATOR DRIVEN BY
EXPONENTIALLY CORRELATED NOISE

If the random force driving the particles is not the
delta-correlated white noise but a coloured noise, the re-
sistance force against the particle motion cannot be ar-
bitrary (in particular, it cannot be the Stokes one as in
the traditional Einstein and Langevin theories) but must
obey the FDT. Then the equation of motion along the
axis x for the BP has a non-Markovian form of the gener-
alized LE [2] that, for a particle of mass M in a harmonic

potential U = kx2/2, is

Mv̇(t) +M

∫ t

0

Γ(t− t′)v(t′)dt′ +Mω2x(t) = f(t) , (1)

where the force f has zero mean and its time corre-
lation function at t > 0 is ⟨f(t)f(0)⟩ = kBTΓ(t).
The memory in the system is described by the kernel

Γ(t) = ωMωm exp(−ωmt). Here, ω = (k/M)1/2 is the
oscillator frequency and v(t) = ẋ(t) is the velocity of
the BP. Let the correlated random force f(t) arises from
the standard LE mu̇(t) + γu(t) = η(t) with the white
noise force η(t) and the friction factor γ in the Stokes
force proportional to the velocity u(t) of the surround-
ing particles. The characteristic relaxation times of the
particles of mass m and the BP of mass M , respec-
tively, are τm = 1/ωm = m/γ and τM = 1/ωM = M/γ .
According to the rule first derived in [8], the stochas-
tic LE can be converted to a deterministic equation for

the quantity V (t) = ξ̇(t), where ξ(t) is the particle

MSD [7], V (0) = ξ̇(0) = 0, and the force f(t) is re-
placed with 2kBT (kB is the Boltzmann constant and
T is the temperature). Using the Laplace transformation

L , this equation for Ṽ (s) = L{V (t)} reads

Ṽ (s) =
2kBT

M

s+ ωm

s3 + ωms2 + (ωmωM + ω2)s+ ωmω2
. (2)

The inverse transformation, found after expanding this
expression in simple fractions, is

V (t) =
2kBT

M

3∑
i=1

Ai exp(sit) , (3)

and the MSD is obtained by simple integration,

ξ(t) =

∫ t

0

V (t′)dt′ =
2kBT

M

3∑
i=1

Ai

si
[exp(sit)− 1] . (4)

Here, si are the roots of the cubic polynomial in the
denominator of (2) and A1 = (s1 + ωm)(s1 − s2)

−1(s1 −
s3)

−1 . The coefficients A2 and A3 have the same form
with the cyclic change of the indexes 1 → 2 → 3 → 1.
For these constants the following relations take place

∑
i

Ai

si
=

ωm

s1s2s3
= − 1

ω2
,

∑
i

Ai = 0 ,
∑
i

Aisi = 1 ,

∑
i

Ais
2
i = 0 ,

∑
i

Ais
3
i = −(ωmωM + ω2) .

They can be used in calculations of the asymptotic be-
haviour of the solution (4). For ξ(t) at t → 0 we find
(the main term being independent on the driving force
intensity)

ξ(t) ≈ kBT

M
t2
(
1− ωmωM + ω2

12
t2 + . . .

)
. (5)

At long times the asymptote can be written in the form
(independent on m),

ξ(t) ≈ 2kBT

Mω2

[
1− exp

(
−ω2t

ωM

)]
. (6)

In the absence of the harmonic force (ω → 0), we have
the expected result ξ(t → ∞) ≈ 2kBTt/γ , which follows
also from the exact solution (3) and the properties of Ai .

Now, let us take into account the possibility that
the harmonic well moves with the velocity v∗ along the
axis x [3]. The position of the BP will be denoted by
xt = x+x∗ , where x obeys the stochastic LE (1) and x∗

is the solution of the inhomogeneous deterministic equa-
tion

ẍ∗ +

∫ t

0

Γ(t− t′)ẋ∗(t′)dt′ + ω2x∗ = ω2v∗t . (7)

The full solution satisfies the GLE (1) with x in the last
term on the left hand side replaced by xt − v∗t and v
changed to vt = ẋt . The solution for x∗(t) with the initial
conditions x∗(0) = ẋ∗(0) = 0 can be easily obtained in a
similar way as above. Using the Laplace transformation

we obtain x∗(t) = ω2v∗
∑

iAis
−1
i {[exp(sit) − 1]s−1

i − t} ,
with the following limits at short and long times, respec-
tively: x∗(t → 0) ≈ ω2v∗t3/6 and x∗(t → ∞) ≈ v∗t .
The full MSD of the particle is calculated as X(t) =

ξ(t) + [x∗(t)]2 .

Now we show that when the correlation time of the
stochastic force f(t) converges to zero, the obtained so-
lution agrees with the classical solution of the standard
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Fig. 1. VAF normalized to the t → 0 limit as calculated from

(4) and (9). Correlated noise: 1 – harmmonic potential, 2 – free
particle; Langevin: 3 – harmonic potential, 4 – free particle; 5 –

Einstein theory, for silica particles R = 1.25µm

Fig. 2. MSD of the Brownian oscillator calculated from (4). The
parameters are as in Fig. 1 except the radius of the particle R =

0.5µm

Einstein-Langevin theory. When τm → 0 (ωm → ∞), (2)
reduces to

Ṽ (s) =
2kBT

M

1

s2 − s1

( 1

s− s2
− 1

s− s1

)
, 2s1,2 =

− ωM

[
1∓ (1− 4ω2ω−2

M )1/2
]
.

Then the inverse Laplace transformation gives for the
time-dependent diffusion coefficient D(t) = V (t)/2

D(t) =
kBT

M

1

s2 − s1
[exp(s2t)− exp(s1t)] . (8)

The MSD takes the form

ξ(t) =

∫ t

0

V (t′)dt′ =

2kBT

M

1

s2 − s1

( 1

s1
− 1

s2
+

exp(s2t)

s2
− exp(s1t)

s1

)
. (9)

Using s1s2 = ω2 , the limit at t → ∞ of this expression
agrees with (6): ξ(t → ∞) = 2kBT/Mω2 .

In the absence of the external force (ω → 0), the roots
are s1 = 0 and s2 = −ωM , so that

V (t) =
2kBT

MωM
[1− exp(−ωM t)] , (10)

and the MSD has the familiar form [2, 8]

ξ(t) =
2kBT

γ

[
t+

exp(−ωM t)− 1

ωM

]
, (11)

with the Einstein limit ξ(t) = 2kBTt/γ at t → ∞ , and

the ballistic behaviour ξ(t) ≈ kBTt
2/M at t → 0.

Figures 1 and 2 show the numerical calculations of
the VAF Φ(t) and MSD from our general formula (4) in
comparison with the result from the standard theory (9),

according to the relation Φ(t) = ⟨v(t)v(0)⟩ = ξ̈(t)/2 [4].

The parameters for spherical silica particles in water
are taken from the recent experiment [17], where the full
transition from the ballistic to diffusive motion has been
directly observed for optically trapped Brownian parti-
cles. Figure 1 demonstrates the significant differences be-
tween the VAFs obtained from the memoryless Langevin
theory and that from our model with the memory ef-
fects, both for a free particle and a particle in a har-
monic potential. In the Einstein theory Φ(t) = 0. Fig-
ure 2 shows the MSD calculated for the confined parti-
cle. Note however that for small stiffness of the potential
(k = 280 pNµm−1 ), the effect of confinement in the ex-
periments [18] is not significant within the used timescale.

3 BROWNIAN OSCILLATOR WITH
HYDRODYNAMIC MEMORY

The standard LE for the velocity v(t) = dx/dt of a
BP has the form

m
dv

dt
= −γv +

√
2Dξ(t) , (12)

where the coefficient of friction γ for a spherical par-
ticle with the radius R and the mass m is the Stokes
one, γ = 6πRη (η is the dynamic viscosity), and the
erratic motion of the particle, resulting from random, un-
compensated impacts of the molecules of the surround-
ing fluid is described by the stochastic (white noise)
force ∼ ξ(t) with the statistical properties ⟨ξ(t)⟩ = 0,
⟨ξ(t)ξ(t)⟩ = δ(t − t) and the intensity D = kBTγ . The
Stokes friction force, which is traditionally used to de-
scribe the friction that a particle feels during its motion
in a liquid, is in fact valid only for the steady motion of
the particle (at long times), and for non-stationary mo-
tion should be replaced by the expression [12–15]

F (t) = −γ
{
v(t)+

ρR2

9η

dv

dt
+

√
ρR2

πη

t∫
−∞

dv

dt′
dt′√
t− t′

}
, (13)

where ρ is the density of the solvent. Equation (13) holds
for all times t ≫ R/c (c is the sound velocity), ie, except
the very short times when the solvent compressibility
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must be taken into account. This expression has been
derived by Boussinesq in 1885 [18], used in the mentioned
work [12], and later brought to wider attention by Hinch
[15]. It is seen from (13) that for fluids with the density
comparable to the density of the BP (which is the usual
case of freely buoyant particles), the terms additional to
the Stokes one cannot be neglected since in the equation
of motion for the particle they are of the same order as the
inertial term. Here we will consider a more complicated
problem of the movement of the BP, when the particle is
subjected to an external harmonic potential.

The solution can be obtained as follows. Similarly as in
the preceding section, using the work [8], instead of (12)
with the friction force (13) we can solve the deterministic
“equation of motion” for the quantity V (t) = dX(t)/dt ,
where the particle MSD is now denoted as X(t),

V̇ (t) +
1

τ

√
τR
π

∫ t

0

V̇ (t′)√
t− t′

dt′ +
1

τ
V (t)+

ω2
0

∫ t

0

V (t′)dt′ = 2Φ0 , Φ0 =
kBT

M
. (14)

Here M = m + ms/2 (ms is the mass of the solvent

displaced by the particle) and ω2
0 = k/M (k is the stiff-

ness of the trapping potential). The characteristic times
in this equation are τ = M/γ (the relaxation time of

the BP) and τR = ρR2/η (the vorticity time). The con-
finement introduces another timescale τk = γ/k . The
constant “force” 2kBT at the right begins to act on
the particle at the time t = 0; up to this moment the
particle is at rest together with the liquid [8, 12]. The
problem has to be solved with the evident initial condi-
tions V (0) = X(0) = 0. It is also seen from (14) that

V̇ (0) = 2Φ0 . Taking the Laplace transformation L of

(14), we obtain for Ṽ (s) = L{V (t)}

Ṽ (s) = 2Φ0s
−1

(
s+

√
τRτ

−1s1/2+τ−1+ω2
0s

−1
)−1

. (15)

Its inversion gives the solution

V (t) = 2Φ0

4∑
i=1

bizi exp(z
2
i t) erfc(−zi

√
t), (16)

where zi are the roots of the quartic equation

z4 + τ
1/2
R τ−1z3 + τ−1z2 + ω2

0 = 0 and the coefficients bi
can be determined decomposing the right hand side of
(15) in simple fractions,

Ṽ (s) = 2Φ0

4∑
i=1

bi√
s− zi

, (15a)

b1 =
[
z31 − z21(z2 + z3 + z4) + z1(z2z3 + z2z4

+ z3z4)− z2z3z4
]−1

,

b2 = (z2 − z1)
−1

[
z22 − z2(z3 + z4) + z3z4

]−1
,

b3 = (z1 − z3)
−1(z2 − z3)

−1(z3 − z4)
−1,

b4 = (z1 − z4)
−1(z2 − z4)

−1(z4 − z3)
−1.

These constants obey the following relations

4∑
i=1

bi = 0,
4∑

i=1

bi
zi

= − 1

ω2
0

,
4∑

i=1

bi
z2i

= 0

4∑
i=1

bi
z4i

=
γM

2k2

√
τR
π

=
τk
2ω2

0

√
τR
π

=
ττ2k
2

√
τR
π

which can be used in calculations of the asymptotic be-
haviour of the solution (17), (18), (20) and (25).

Equation (15a) holds for different roots zi . If some of
the roots zi are equal, the coefficients bi can be obtained
by taking the appropriate limits in the above expressions
or, alternatively, again by analyzing (15) decomposed in
simple fractions. For example, if z1 = z2 ̸= z3 ̸= z4 and
z4 ̸= z1 instead of (15a) we have

Ṽ (s) = 2Φ0

[ b′1√
s− z1

+
b′2

(
√
s− z1)2

+
b′3√
s− z3

+
b′4√
s− z4

]
,

(15b)
and the coefficients b′i are obtained by comparing (15b)
and (15).

The VAF Φ(t) = ⟨ẋ(t)ẋ(0)⟩ = Ẍ(t)/2 = V̇ (t)/2 is
expressed by a similar equation, if one divides V (t) by 2

and replaces bizi with biz
3
i . For ω2

0 → 0 this expression
exactly corresponds to the solutions found in Refs. [12, 15]
and contains the long-time tail discovered already in the
computer experiments [19, 20]. In our more general case
it follows from (16) for the VAF at t → ∞ that

Φ (t) = Φ0

4∑
i=1

biz
3
i exp

(
z2i t

)
erfc

(
−zi

√
t
)

= − Φ0

2
√
π

1

t3/2

4∑
i=1

bi

∞∑
m=1

(−1)
m (2m− 1)!!

(2z2i t)
m−1

≈ 15Φ0

8
√
π

1

t7/2

4∑
i=1

bi
z4i

, Φ(0) = Φ0

(17)

the longest-lived tail is ∼ t−7/2 . Finally, the MSD of the
BP is found integrating the function V (t) from 0 to t ,

X(t) = 2Φ0

4∑
i=1

bi
zi

[
exp(z2i t) erfc(−zi

√
t)− 1

]
, (18)

and asymptotic expansion of this for t → ∞ is

X (t) = −2Φ0

4∑
i=1

bi
zi

[
1 +

1

zi
√
πt

∞∑
m=1

(−1)
m (2m− 1)!!

(2z2i t)
m

]

≈ Φ0

[
2

ω2
0

+
1√
π

1

t3/2

4∑
i=1

bi
z4i

]
.

(19)

Equation (18) agrees very well with the experiments on
free [15] and confined [18] BPs. The corresponding nu-
merical calculations for resin and polystyrene particles in
water [18] are shown in Fig. 3 for the VAF and in Fig. 4 for
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Fig. 3. Normalized VAF for Brownian oscillator with hydrody-

namic memory calculated from (18) as Φ(t) = ⟨v(t)v(0)⟩ = Ẍ(t)/2
[4, 17], the parameters are taken from Ref [17]. Hydrodynamic: 1

– harmmonic potential, 2 – free particle; Langevin: 3 – harmonic
potential, 4 – free particle; 5 – Einstein theory, for resin particles

R = 1.25µm

Fig. 4. Normalized MSD for Brownian oscillator with hydrody-

namic memory calculated from (18). Hydrodynamic: 1 – harmmonic
potential, 2 – free particle; Langevin: 3 – harmonic potential, 4 – free
particle; 5 – Einstein theory, for polystyrene particles R = 1.25µm

The parameters are from Ref [17].

the MSD. The figures demonstrate the significant differ-

ences between the standard Langevin and the presented

hydrodynamic theory.

Finally, let us take into account the possibility that

the harmonic well moves with the velocity v∗ along

the axis x . The position of the BP will be denoted by

xt = x+ x∗ , where x obeys the stochastic LE (12) with

the Boussinesq force (13), and x∗ is the solution of the

inhomogeneous deterministic equation

ẍ∗(t)+
1

τ

√
τR
π

∫ t

0

ẍ∗(t′)√
t− t′

dt′+
1

τ
ẋ∗(t)+ω2x∗(t) = ω2

0v
∗t .

(20)

The solution for x∗(t) has to be searched for with the

initial conditions x∗(0) = ẋ∗(0) = 0. Taking the Laplace

transformation L of (20), we obtain for x̃∗(s) = L{x∗(t)}

x̃∗(s) = ω2
0v

∗s−2
(
s2+

√
τRτ

−1s3/2+τ−1s+ω2
0

)−1
. (21)

The inverse transform is found expanding the term
(. . . )−1 in simple fractions,

x̃∗(s) =
ω2
0v

∗

s2

4∑
i=1

bi√
s− zi

, (22)

which yields x∗(t) =

= υ∗

{
t+ ω2

0

4∑
i=1

bi
z3i

[
exp

(
z2i t

)
erfc

(
−zi

√
t
)
− 1

]}
(23)

with the long-time limit: x∗(t) = υ∗{t− ω2
0

4∑
i=1

bi
z3
i
×

[1+
1

zi
√
πt

∞∑
m=1

(−1)m
(2m− 1)!!

(2z2i t)

m

]} ≈ υ∗{t− ω2
0

4∑
i=1

bi
z3i

}

(24)

The full MSD is Xt(t) =

⟨[x(t)− x(0) + x∗(t)− x∗(0)]2⟩ = X(t) + x∗2(t) . (25)

4 CONCLUSION

The theory of the Brownian motion is still being de-
veloped and along with the remarkable improvements of
experimental possibilities it finds an increasing number of
applications, especially in the science and technology of
micro- and nano-systems. It has been found that in many
situations [1, 2, 14, 17] the standard Langevin equation
should be generalized by taking into account the mem-
ory effects on the dynamics or, equivalently, the effects of
finite correlation time of the noise driving the particles.
In our work, a specific problem of the motion of a Brown-
ian particle under the influence of an exponentially corre-
lated stochastic force has been solved within the classical
consideration. As distinct from the usual approaches, the
inertial effects have been taken into account. We have ex-
amined the case of a free particle as well as the motion of
a particle in a harmonic trap (a stochastic oscillator with
memory). From the generalized Langevin equation the ex-
act velocity autocorrelation function, the time-dependent
diffusion coefficient, and the mean square displacement
ξ(t) of the particle have been calculated and analyzed in

detail. At short times ξ(t) ∼ t2 describes the ballistic
motion. At t → ∞ it converges to a constant strongly
depending on the oscillator frequency ω and agrees with
the Einstein diffusion limit when ω → 0. The full mean
square displacement for a trapped particle corresponds to
the experiments on colloids [6]. Our results can be also
used to describe the charge fluctuations in nanoscale elec-
tric circuits in contact with the thermal bath, for which
essentially the same equations have been derived from the
first principles [21, 22]. We have also considered a similar
problem of the dynamics of a Brownian particle moving
in a liquid, when the standard Langevin equation does
not represent a good model. In this case the memory
follows naturally from the non-stationary Navier-Stokes



58 L. Glod — G. Vasziová — J. Tóthová — V. Lisý: BROWNIAN OSCILLATORS DRIVEN BY CORRELATED NOISE IN . . .

hydrodynamics of incompressible fluids. We have solved
the problem of the hydrodynamic Brownian motion of a
particle in an external harmonic potential. The velocity
autocorrelation function and the mean square displace-
ment have been obtained in a more effective way than
within the approaches used in the literature so far. We
have generalized the results known for free and confined
particles [16] to the presence of a moving potential well,
in correspondence with a number of recent experiments
on particles in optical traps.
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