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ON THE PHASE CROSSING STATISTICS AND RANDOM
FM NOISE IN GENERALIZED RICE FADING CHANNELS
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In this paper we consider phase process second order statistics of generalized Rice (Beckmann) multipath fading channel.
Closed-form expression for JPDF of phase and random FM noise is derived. Furthermore expressions for the PDF and CDF
of random FM noise are obtained. The level-crossing rate of the phase process is then obtained for any phase crossing level.
Obtained expressions reduces to known ones for Hoyt, Rice and Rayleigh fading channels, since these are the special cases of
generalized Rice fading channel. Moreover, derived analytical expressions are compared with results obtained by computer
simulation where excellent agreement is achieved. Presented results can be applied for analyzing the statistics of FM spikes
in the case of data transmission over generalized Rice fading channels.

K e y w o r d s: level crossing theory, Hoyt fading channels, generalized Rice fading channels, random frequency modula-
tion (FM) noise, phase process

1 INTRODUCTION

In wireless communication, an accurate modeling of
propagation channels is very important both for the sys-
tem design and performances analysis. A large number
models have been proposed to describe the statistics
of the amplitude and phase of multipath fading signals
in different scenarios and operating environments [1–4].
Rayleigh and Rice models are widely used for describ-
ing behavior of the small-scale multipath fading [5, 6]. In
these models in-phase and quadrature component of the
signal are uncorrelated Gaussian processes having identi-
cal variances. Rice model generalizes Rayleigh model and
is applicable when there exists LOS (Line Of Sight) signal
component.

There are two ways for increasing the flexibility of
these classical models in order to enable a better fit to
the measurement data. The first way is considered in [6, 7]
and assumes that Gaussian processes which describe the
model are correlated. Other way is to assume that these
processes have different variances. In such manner, a Hoyt
(Nakagami-q ) model [8] is regarded as the extension of
Rayleigh model. It is independently described by Nak-
agami [9] as an approximation of Nakagami-m model. It
is shown [5,11] that this model is applicable for describing
the statistics of fading envelope in real-world mobile ra-
dio channels. Similar generalization of Rice model, known
as generalized Rice model or Beckmann model, is intro-
duced in [12]. Beckmann model assumes that multipath
component is Hoyt faded and LOS component has con-
stant amplitude and phase shift. In [13] it is shown that
generalized Rice model fits accurately to measurement
data on mobile satellite channels. First order statistics of
this model are studied in [14,15,16].

The level-crossing rate (LCR) and average fade dura-

tion (AFD) are very important quantities in the determi-

nation of the channel phase statistical properties. These

quantities are known as second-order statistics and are

extensively explored in the literature [3]. An expressions

for LCR and AFD of envelope process for Hoyt and Beck-

mann fading model are given in [16] and [17] respectively.

On the other hand, statistics of phase process and its

derivative (also known as random frequency modulation

(FM) noise) are important for some applications. An ex-

ample of such application is the design of optimal carrier

recovery schemes needed in the synchronization subsys-

tem of coherent receivers [18]. Another notable example

involves the performance of FM receivers using a limiter-

discriminator for detection, where random FM spikes gen-

erated by phase jumps deteriorate the error-rate perfor-

mance [19]. Characterization of phase process and FM

noise for Rayleigh and Rice models are given in, for ex-

ample [2, 20, 3]. Similar work for Hoyt model is recently

published in [17]. An intention of this paper is to general-

ize results from [17] and obtain the phase LCR and PDF

of FM noise for generalized Rice model.

The remainder of the paper is organized as follows. In

Section 2, the generalized Rice fading model is described

and its first order statistics are reviewed. In Section 3 we

derived PDF of random FM noise together with the JPDF

of phase and FM noise. This JPDF is used in Section 4

where closed-form expression for phase LCR is obtained.

In Section 5 we compared theoretical results with the

computer simulation. Section 6 concludes the paper.
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2 GENERALIZED RICE FADING MODEL

AND FIRST ORDER STATISTICS

The received signal in equivalent complex baseband,
when transmitting an unmodulated carrier over gener-
alized Rice fading channel ([13,16]), is described by the
Gaussian random process µr(t) defined by

µr(t) = A exp(jθ0) + µ1(t) + jµ2(t) . (1)

Here µ1(t) and µ2(t) are uncorrelated, zero mean, low-

pass Gaussian processes with variances σ2
1 and σ2

2 respec-
tively. Values A and θ0 represents constant amplitude
and phase shift of LOS component.

Envelope and phase processes, denoted by R(t) and
ϑ(t) respectively, can be obtained from (1) as modulus
and argument of µr(t)

R(t) =
√

(A cos θ0 + µ1(t))2 + (A sin θ0 + µ2(t))2,

ϑ(t) = arctan
A sin θ0 + µ2(t)

A cos θ0 + µ1(t)
.

(2)

First order statistics of generalized Rice fading process
are investigated in [13,16]. Here we review these expres-
sions. Since µ1(t) and µ2(t) are uncorrelated Gaussian
processes, their JPDF (Joint Probability Density Func-

tion) is given by

pX1,X2
(x1, x2) =

1

2πσ1σ2

exp

(

− x2
1

2σ2
1

− x2
2

2σ2
2

)

. (3)

Let us introduce the transformation from cartesian to
polar coordinates defined by:

x1 +A cos θ0 = r cos θ, x2 +A sin θ0 = r sin θ (4)

which Jacobian is J = r . By applying transformation
(4) we obtain the following expression for the JPDF of
envelope and phase process

pRϑ(r, θ) =
r

2πσ1σ2

exp
[

− (r cos θ −A cos θ0)
2

2σ2
1

− (r sin θ −A sin θ0)
2

2σ2
2

]

. (5)

Integration of JPDF pRϑ(r, θ) with respect to variable θ
yields to

pR(r) =
r

2πσ1σ2

∫ 2π

0

exp[−r2h(θ) + rAg(θ0, θ)]dθ. (6)

Two auxillary functions h(θ) and g(θ0, θ) are defined as
follows [16]

h(θ) =
cos2 θ

2σ2
1

+
sin2 θ

2σ2
2

,

g(θ0, θ) =
cos θ0 cos θ

σ2
1

+
sin θ0 sin θ

σ2
2

.

(7)

Similarly by performing an integration of (1) with re-
spect to variable r we derive the PDF of phase process:

pϑ(θ) =
1

4πσ1σ2h(θ)
exp
[

A2

(g2(θ0, θ)

4h(θ)
− h(θ0)

)]

×

[π

2
exp
(

−A2g2(θ0, θ)

4h(θ)

)

−Ag(θ0, θ)

2
√

h(θ)

(

1−erf
Ag(θ0, θ)

2
√

h(θ)

)]

.
(8)

Here erf(x) is the error function defined by erf(x) =
2√
π

∫ x

0
exp(−t2)dt . It can be verified that (8) reduces to

the known expressions for Rice and Hoyt fading [21] in
cases σ1 = σ2 = σ , β1 = β2 = β and A = 0 respectively.

4 STATISTICS OF RANDOM FM NOISE

In this section we obtain the closed-form expression for

the JPDF of phase process and its derivative pϑϑ̇(θ, θ̇).

From this result, the PDF of phase derivative ϑ̇(t) (Over-
dot will denote time derivative, d/dt) can be directly de-
rived. Phase derivative process is also known as random
FM noise [17, 18].

We start from the JPDF of µ1(t), µ2(t), µ̇1(t) and
µ̇2(t) at the same time t . In the case when processes µ1(t)
and µ2(t) has symmetrical Doppler PSD (Power Spectral
Density) [16, 17, 21] corresponding JPDF is given by the
following expression

pX1,X2,Ẋ1,Ẋ2
(x1, x2, ẋ1, ẋ2) =

1

4π2σ1σ2

√
β1β2

exp
(

− x2
1

2σ2
1

− x2
2

2σ2
2

− ẋ2
1

2β1

− ẋ2
2

2β2

)

, (9)

where β1 and β2 are variances of the processes µ̇1(t) and
µ̇2(t) respectively. Note that in such case, all processes
µ1(t), µ2(t), µ̇1(t) and µ̇2(t) are pairwise uncorrelated [3].
For the classical Jakes Doppler PSD [3], variances βi can
be written as βi = 2(πσifmaxi

) where fmaxi
is maximal

Doppler frequency of the process µi(t), for i = 1, 2. We
assume that Gaussian processes µ1(t) and µ2(t) have
different maximum Doppler frequencies, i.e. that fmax1

6=
fmax2

. Although this assumption lack of a clear physical
basis, it allows to increase the flexibility of the model
and therefore enables a better fitting to the measurement
data.

For the purpose of deriving the PDF of random FM
noise and the analysis of the crossing statistics, a JPDF

pRṘϑϑ̇(r, ṙ, θ, θ̇) of processes R(t), Ṙ(t), ϑ(t) and ϑ̇(t) is
required. This JPDF can be obtained by applying the
transformation of cartesian coordinates (x1, x2, ẋ1, ẋ2) to

polar coordinates (r, θ, ṙ, θ̇) given by the following rela-
tions

x1 = r cos θ −A cos θ0, x2 = r sin θ −A sin θ0,

ẋ1 = ṙ cos θ − rθ̇ sin θ, ẋ2 = ṙ sin θ + rθ̇ cos θ,
(10)
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Fig. 1. PDF p
ϑ̇
(θ̇) versus θ for different values of A and θ0 = 0 Fig. 2. PDF p

ϑ̇
(θ̇) versus θ for different values of θ0 and A = 0.6

and whose Jacobian is J = r2 . Combining (9) and
relations (10) yields to the desired JPDF of processes

R(t), Ṙ(t), ϑ(t) and ϑ̇(t)

pRṘϑϑ̇(r, ṙ, θ, θ̇) =
r2

4π2σ1σ2

√
β1β2

×

exp
[

− (r cos θ −A cos θ0)
2

σ2
1

− (r sin θ −A sin θ0)
2

σ2
2

− (ṙ cos θ − rθ̇ sin θ)2

β1

− (ṙ sin θ + rθ̇ cos θ

β2

]

(11)

where r ≥ 0, −∞ < ṙ < +∞ , −π < θ < π and

−∞ < θ̇ < +∞ . This expression is the same as one in
[16], but given in the different form.

Integration of (11) with respect to the variable ṙ yields

to the JPDF of R(t), ϑ(t) and ϑ̇(t). In such manner we
obtain

pRϑϑ̇(r, θ, θ̇) =
r2

(2π)3/2σ1σ2

√

β(θ)
×

exp
[

−A2h(θ0) + rAg(θ0, θ)−
r2

2

(

2h(θ) +
θ̇2

β(θ)

)]

.
(12)

Here β(θ) denotes the following auxillary function

β(θ) = β1 sin
2 θ + β2 cos

2 θ . (13)

Further integration of (12) with respect to r yields to the
required JPDF of phase and FM noise given by

pϑϑ̇(θ, θ̇) =
1

4(πa(θ, θ̇))3/2σ1σ2

√

β(θ)
f
( Ag(θ0, θ)
√

2a(θ, θ̇)

)

×

exp(−A2h(θ0)). (14)

where

f(s) = 2s+
√
π(1 + 2s2) exp(s2)(1 + erf(s)),

a(θ, θ̇) =
θ̇2

2β(θ)
+ 2h(θ).

(15)

Note that in the case of Hoyt fading (A = 0) and
Rician (σ1 = σ2 = σ ) expression (14) reduces to the cor-
responding expressions given in [3] and [17] respectively.

Consider the PDF of FM noise given by

pϑ̇(θ̇) =

∫ 2π

0

pϑϑ̇(θ, θ̇)dθ. (16)

Unfortunately, it seems that the last integral cannot be
solved in the closed-form. Similarly we have CDF of ran-

dom FM noise Fϑ̇(θ̇) given by

Fϑ̇(x) =

∫ x

−∞

∫ 2π

0

pϑϑ̇(θ, θ̇)dθdθ̇. (17)

Note that integral in expression (17) also cannot be solved
in closed-form. Nevertheless, we can study some proper-

ties of pϑ̇(θ̇). Similarly as for the Hoyt fading [17] holds

that ϑ(t) has zero mean, ie Eϑ̇(t) = 0. This fact holds

since pϑ̇(θ̇) is an even function of θ̇ (since pϑϑ̇(θ, θ̇) is an

even function of argument θ̇ for each value θ ∈ [0, 2π)).

Moreover, the second moment of pϑ̇(θ̇) is infinite and

therefore the variance σ2

ϑ̇
is also infinite.

By numerical evaluation it can be found that pϑϑ̇(θ, θ̇)

6= pϑ(θ)pϑ̇(θ̇) and therefore phase process and FM noise
are not statistically independent. It can be checked that
such result is valid, also for the Hoyt fading (this is not yet
reported in literature). In contract of that, for example,
in the case of Rayleigh fading [3] phase and FM noise are
statistically independent.

The PDF of random FM noise pϑ̇(θ̇) is evaluated for

the parameter values s21 = 0.10391, s22 = 0.030488, β1 =
1103.4298 and β2 = 1091.5206. These values are given in
[11] and are obtained by fitting the first and second order
statistics of envelope R(t) of Hoyt model to measurement
data of an equivalent mobile satellite channel. Remember
that generalized Rice model reduces to Hoyt by taking
A = 0.

Figures 1 and 2 show the graph of pϑ(θ) for different
values of LOS component amplitude A and phase θ0
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Fig. 3. Level-crossing rate N+

ϑ
(θ) of the phase process ϑ(t) versus

phase-crossing level θ for different values A and θ0

Fig. 4. Influence of LOS component phase θ0 on phase level-

crossing rate N+

ϑ
(θ) for constant value A = 0.1

respectively. As it can be seen A has more significant
influence on pϑ(θ) than θ0 . Graphs for θ0 = 3π/4 and
θ0 = π are the same as graphs for θ0 = π/4 and θ0 = 0.
This holds due to the fact that g(π − θ0, θ) = g(θ0, θ)
and h(π − θ0) = h(θ0) and therefore values of pϑ(θ) for
θ0 = x and θ0 = π − x are equal.

4 PHASE LEVEL–CROSSING RATE

Level crossing rate (LCR) of the given process X(t) is
the expected number of times process crosses the specified
threshold x0 with positive slope. It is usually denoted

by N+

X(x0) and can be determined using the following
expression [3]

N+

X(x0) =

∫ +∞

0

ẋpXẊ(x0, ẋ)dẋ. (18)

Closed-form expressions for LCR of the envelope R(t) are
given in [16]. Here we deal with the phase process ϑ(t)
and obtain its LCR (also known as PCR, Phase Crossing

Rate) as a closed-form expression.

By performing an integration we obtain

N+

ϑ (θ) =

√

β(θ)

4πσ1σ2

√

h(θ)
exp(−A2h(θ))f1

(

Ag(θ0, θ)

2
√

h(θ)

)

.

(19)
Here f1(s) denotes the following auxillary function

f1(s) = exp(s2)(1 + erf(s)). (20)

In the case A = 0 (Hoyt fading) expression (19)

becomes N+

ϑ (θ) =
√

β(θ)/(4πσ1σ2

√

h(θ)), which is

the same as expression (10) i [17]. In the case σ1 =
σ2 = σ and β1 = β2 = β (Rician fading), phase LCR
(19) reduces to

N+

ϑ (θ) =

√
β

4πσ
exp
(

−A2 sin2(θ − θ0)

2σ2

)

×
[

1 + erf
A cos(θ − θ0)

σ
√
2

]

. (21)

If additionally holds A = 0 (Rayleigh fading) then we

have N+

ϑ (θ) = γ/(4π). Here γ =
√
β/σ is so-called

radius of gyration of Doppler PSD of µ1(t) and µ2(t).
Note that, in this case, PDF pϑ(θ) = 1/(2π) is con-

stant and therefore N+

ϑ (θ) does not depend on phase
level θ . This is not true in the case A 6= 0 where

N+

ϑ (θ) depends on θ . It is worth mentioning that

N+

ϑ (π) is average number of 2π positive noise spikes
that could be observed at the frequency detector. The
mean time interval, separating two consecutive noise

spikes is given by τ̄ = 2π/N+

ϑ (π). By replacing θ = π

in (19) we obtain

N+

ϑ (π) =

√
β2

4πσ2

exp
(

−A2 sin2 θ0
2σ2

2

)

×
[

1− erf
A cos θ0

σ1

√
2

]

. (22)

Observe that (22) has the similar form as LCR for
Rice fading model given by (21). In the case of Hoyt

fading model, N+

ϑ (π) has the same form as LCR for

the Rayleigh fading [17].

In figures 3 and 4, a graph of N+

ϑ (θ) versus crossing
level θ is shown. We also used values of the parameters
σ1, σ2, β1 and β2 from [11].

In figure 3 we compared three cases

• case of Hoyt fading (A is zero),

• case when phase of LOS component θ0 is zero, but A
is not zero,

• case when both envelope and phase of LOS component
are not zero.

It can be seen that in first two cases (A = 0, and

A 6= 0 but θ0 = 0) phase level-crossing rate N+

ϑ (θ) is an
even function of argument θ . This is not true in the third
case. These facts can be directly obtained from (19).

Consider now the case when maximum Doppler fre-
quencies fmax1

and fmax2
are equal. Let fmax1

=

fmax2
= fmax . Then holds β(θ) = 2(πfmaxσ1σ2)

2h(θ).
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Fig. 5. CDF F
ϑ̇
(θ̇) versus θ in two different cases. Comparison

between theory - expression (17)- and results obtained by simulation

Fig. 6. Level-crossing rate N+

ϑ
(θ) of the phase process ϑ(t) versus

phase-crossing level θ in two different cases. Comparison between
theory (expression (19)) results obtained by simulation

By replacing in (19) we obtain

N+

ϑ (θ) =
fmax

2
√
2
exp(−A2h(θ))f1

(Ag(θ0, θ)

2
√

h(θ)

)

. (23)

Let us mention that in the case A = 0 (Hoyt fading)

we have N+

ϑ (θ) = fmax/(2
√
2) which is independent of

crossing level θ (as it is reported in [17]). In general case
when A 6= 0 such conclusion does not hold.

Figure 4 shows the dependence of N+

ϑ (θ) versus

LOS component phase θ0 . From (19) it is evident that

N+

ϑ (θ0) = N+

ϑ (2π − θ0). Therefore it is sufficient to con-

sider values θ0 ∈ [0, π] . It can be seen that all curves,
except one for θ = 0 has two maxima between π/2 and
π .

5 SIMULATION

For the conformation of obtained theoretical results
for FM noise statistics and phase LCR, a computer sim-
ulation is performed. A deterministic method, based on
the Rice’s sum of sinusoids and described in [21,22] is
used. Recall that in this model, Gaussian processes µi(t)
(i = 1, 2) are approximated by the following sum of co-
sine waves

µ̃i(t) =

Ni
∑

n=1

ci,n cos(2πfi,n + θi,n). (24)

Values ci,n, fi,n and θi,n are called gains, discrete Dop-

pler frequencies and phases respectively and Ni denotes
the number of sinusoids used in simulation. There are
several methods for computation of these quantities. We
used Method of Exact Doppler Spread (MEDS) described
in [22]. According to MEDS, simulation parameters are

given by ci,n = σi

√

2/Ni , fi,n = fmaxi
sin[(π/(2Ni))(n−

1/2)] and θi,n are realizations of uniform distributed ran-
dom variable on interval [0, 2π). Note that maximum

Doppler frequencies can obtained from relation βi =
2(πσifmaxi

)2 .

For the simulation purpose, we used the same values
of input parameters s21 = 0.10391, s22 = 0.030488, β1 =
1103.4298 and β2 = 1091.5206. We compared the values

of CDF Fϑ̇(θ̇) and phase LCR N+

ϑ (θ) obtained by theory

(expressions (17) and (19)) and by simulation. Results
are shown in figures 5 and 6. As it can be seen, there
is excellent agreement between theory and simulation in
both figures.

6 CONCLUSION

In this paper, we studied the phase level-crossing rate
(LCR) and statistics of random FM noise in generalized
Rice (Beckmann) fading channels. The JPDF of phase
process and its time derivative (random FM noise) is
obtained in closed-form. This leads to the expression for
PDF and CDF of random FM noise. Phase level-crossing
rate is also obtained in the closed-form. All expressions
are considered in special cases of Hoyt, Rice and Rayleigh
channels and agreement with known expressions for this
cases is shown. In order to verify obtained expressions, a
computer simulation is performed. The derived analytical
expressions are found to be in excellent agreement with
those obtained by computer simulations.

All presented results can be applied for analyzing the
statistics of FM spikes in the case of data transmission
over generalized Rice fading channels.
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