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ROBUST DECENTRALIZED CONTROLLER
DESIGN: SUBSYSTEM APPROACH

Danica Rosinovd — Nguyen Quang Thuan "
Vojtech Vesely *— Lubomir Marko

The paper addresses the problem of the robust output feedback PI controller design for complex large-scale stable systems
with a state decentralized control structure. A decentralized control design procedure is proposed for static output feedback
control which is based on solving robust control design problems of subsystems’ size. The presented approach is based on
the Generalized Gershgorin Theorem and uses the so-called equivalent subsystems approach to consider the interactions in
the local robust controller design. The resulting decentralized control scheme has been successfully tested on two examples:
a linearized model of three interconnected boiler-turbine subsystems and a linear model of four cooperating DC motors
where the problem is to design four local PI controllers for a large scale system which will guarantee robust stability and

performance of the closed-loop uncertain system.
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1 INTRODUCTION

The control of complex or large-scale system is a new
approach to science that studies how relationships be-
tween parts give rise to the collective behaviours of a sys-
tem and forms the relationship with its environments.
Nowadays, most industrial processes are naturally large-
scale systems which need a control strategy using the sys-
tem approach. One of the main problems of large-scale
system is its high dimension which restricts the possibility
to synthesize the controller using the LMI/BMI approach.
Our attention now is to study a suitable control strategy
to overcome this obstacle. In this paper, we focus on the
control of linear large-scale stable dynamic systems using
a decentralized approach. We assume that the large-scale
system consists of M subsystems with order as small as
possible to design a robust decentralized controller on the
subsystem level. The stability and robustness properties
of the complex system are checked in the LMI framework.

Decentralized control has become an effective tool for
control design of large scale systems during the past
decades. Robustness is one of the attractive qualities of
the decentralized control scheme, since such a control
structure can be inherently resistant to a wide range of
uncertainties both in subsystems and in the interconnec-
tions. Considerable effort has been made to consider ro-
bustness issues in the decentralized control structure and
decentralized control design schemes, eg in [4-7] and [9].
The upper bound on nonlinear terms or/and interactions
is extensively used in decentralized control design ap-
proaches based on Lyapunov stability conditions, eg in
[5]. To receive computationally tractable results for large
scale systems, LMI formulation gains a notable interest.
In [9], design of a static output feedback using LMI is

proposed, based on Lyapunov stability and factorization
of the respective matrices to receive a linear formulation.
The above approaches compute decentralized control by
solving the problem of the overall system size.

To reduce the problem size in decentralized control
design for large scale systems, the diagonal dominance or
block diagonal dominance concept can be adopted. Re-
cently, the so-called Equivalent Subsystems Method has
been developed for decentralized control in the frequency
domain by Kozdkov and Vesely [2]. The main concept of
the Equivalent Subsystems Method, originally developed
as a Nyquist based frequency domain decentralized con-
troller design technique, is the so-called equivalent sub-
system. Equivalent subsystems are generated by shaping
the Nyquist plot of each decoupled subsystem using any
selected characteristic locus of the matrix of interactions.
The important point in this approach is that the con-
trollers of equivalent subsystems can be independently
tuned for stability (and specified feasible performance)
according to the specified stability and/or performance
indices (eg degree of stability, overshoot ... ) so that
the resulting decentralized controller guarantees the same
stability /performance indices for the full system.

In this paper an analogy of equivalent subsystems’ ap-
proach is proposed for decentralized control design in he
state space. The major advantage is that the overall con-
trol problem is reduced to the subsystems’ size; on sub-
system level we adopt the robust static output feedback
control design, the interaction bound is considered via
the subsystem stability degree. The robust decentralized
PI controller is designed using the polytopic description
of the uncertain system and applying the robust opti-
mal control design procedure with an extended cost func-
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tion for state-space subsystems generated in each vertex
of the polytopic uncertainty domain. In the illustrating
two examples, the proposed decentralized control design
strategy is applied to design a robust decentralized PI
controller for an interconnected system of boiler-turbines
and four cooperating DC motors.

The controller design procedure proposed in the paper
is not proved but we hope that it can give interesting
results in many practical situations.

2 PRELIMINARIES AND
PROBLEM FORMULATION

Consider the following linear large-scale stable system
with polytopic uncertainty described as

#(t) = A(§)z(t) + B(§)u(t) ,

y(t) = Ca() o

where z(t) € R™ is the state vector, u(t) € R™ is the con-
trol input, y(¢) € R™ is the controlled output (measured
output). Matrices A(§), B(§) € S belong to the convex
hull, and S is a polytope with IV vertices Sy, S2,...,Sn
which can be formally defined as

G { (€) = X3l &k, B(E)
Yalibe=1,&>0.

Matrices A;, B; can be divided into two parts

= Zg:1 €kBk) (1)

A = Aar + Apie

ke{l,2,...
By, = Bax, + B, {

N} (2)

where Agj, = diag{A%;}, Bay = diag{B};},

je{l,..., M}, - block diagonal matrices corresponding
to subsystems and matrices Ak, Bmi are off-diagonal
matrices, that is Amk = Ak — Adk; Bmk = Bk — Bdk~
Assume that matrix C = diag{C,}, j € {1,...,M} is
a block diagonal with dimensions corresponding to sub-
systems of the large-scale system. We assume that each
subsystem can be stabilized by an output feedback PI
controller in the following form

Uy :k}pjyj+k]j/yjdt:kPjijj+k]ij (3)

where
u; € R™7 is the input vector of j subsystem, Z;\il mj; =m,
y; € R™7 is the output vector of j subsystem, Z;\il mj; =m,
€ R" is state vector of j subsystem, Z;\il
z; ER™, z; = fot Cr;x;dt.
Consider va = [z; zj]T, Cr; = diag{C},I;} and
after some small deriving steps, the local law control of
form (4) can be rewritten as follows

nj =mn,

Uj; = [k’ijj k[j} v; = chnjl'j,
Fy = [kPj klj} :

(4)
(5)

29

For the i-th subsystem one obtains
i (t) = Aii(§)wi(t) + Bis(§)ui+
D (A () + Bij(&)u; (1)) (6)
=1
7
with PI controller of the i-th subsystem is extended as
follows

i)i:Dci(g)Ui‘f'Zchi(f)'Ujv i=12,....M (7)

7
where
Dci(f) = Du(g) + Eu(g)F'Cmv
Deij(§) = Dij(§) + Eij () FiCnj
b = [ o] mo=["9].
Dzj(f) = [A”O(E) 8} , E’LJ (f) = [B”O(g)] ’
L,j=1,2,... M, i#j

From (7) for the complex system we obtain
0(t) = (Dae(€) + Dime(§))v(t)
where
Ddc(&) iag{Dci( } )
DmC( ) = {Dcw(f)}z#] y 4= Mii#j

Matrices Dgc(§), Dme(€) € S belong to the convex hull
with N vertices Sl,Sg,.. ,Sn which can be formally
described as follows

N m
Dac(€) =Y kDS, Dme(§) =Y Dhcl  (9)
k=1

where
Ddc—dlag{D .} = diag{ DL + EEF,Ci}
7{Dcz]}7{Dk +EkFC’ﬂ’L}ﬂ
25.77:172)"'7 ;Z#J

Simultaneously, with system (8) we consider the following
complex system

i(t) = (Ga(€) + Gm(€))z(t) (10)
where
N
Ga(§) = ka diagje{l,...,M}{_’Y]kj}7 ’ij >0,
k=1

N
= Z fk{pi‘cj}i,je{l,...,M} )
k=1

0,
Pij =
! pfj>07

We introduce the following known results [3]

i=7,

i?je{]""'7M}’ Z#]
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LEMMA 2.1 (Gershgorin Circle). Let A = {ai;}; jeq1,... n}
and assume that a;; > 0 for each ¢ and a;; <0, ¢ # j.
If A is positive diagonally dominant, that is

aii > Y lag]
j=1

J#i

(11)

then A is an M -matrix. Note that if the system is neg-
ative diagonally dominant, it is stable.

LEMMA 2.2 (Generalized Gershgorin Theorem) [12]. Let
A ={Aij}ijeqr,...my if c1,...,car are positive numbers
such that the following matrix

c1 —[| A2l —[[A1n}
— || Az || c2 —[[A2nr}
—Annll — |l Ans2] ey

is M -matrix, then all eigenvalues of matrix A lie in the
region

Di:{{ZIT(Aii—ZIi) Sci}7 1€ {1,,M}

where r(-) is regularity of square matrix. r(A) =0 if A

is singular and r(A) = HA’1||71 if A is a non-singular
matrix.
LEMMA 2.3 [3]. T Let A € R"™™ be a square matrix

with n different eigenvalues: pi,pe,...,uy, and B €
R™ ™. Then each eigenvalue of A + B lies in one of the
circles

r = | Bllv(P)

|z — il <, (12)

where ||B|| denotes norm of ||B|| and v(P) denotes con-
dition number of a matrix P which transforms A to a di-
agonal matrix, ie P~YAP = diag{u1, u2, ..., jin}. When
A is a normal matrix (AT A= AAT ), then v(P) = 1.

We consider 2-norm of matrices: ||P|| = the largest
singular value of P, and the respective condition number
(the ratio of the largest singular value of P to the smallest
one).

Remark 1. In Lemma 2.3, A can be considered
as a nominal matrix and B as a disturbing one, then
Lemma 2.3 shows how the eigenvalues of A are disturbed
by adding the “disturbance” matrix B. Concerning inter-
connected system, A and B can represent the block di-
agonal part Dg. corresponding to individual subsystems
and interaction part D,,. respectively. From the obser-
vation of above Lemmas, we can conclude:

Due to Lemma 2.1 the stability of system (10) on the
given vertex k is guaranteed if

'yj’.“jZprj,jG{l,...,M}, kEe{l,...,N}. (13)
1=1
1#£]

Concerning system (7) and let G = Dg.(§) and H =
Dpne(§). If system G is stable then G + H will be stable
if

0 < r < abs(max{real{eig(G)}}). (14)

To reach such value of r one can try to minimize the
|H|, v(G) — 1 and max{real{eig(G)}} < 0.
To obtain above results for (10), due to above Lemmas

piy = min; i, j € {1,...,M}; i#j:ke{l,...,N}
k . .
(14)7]]_>max7]€{157M},k€{1,,N}

Consider the interconnected system (8) consisting of M
subsystems (6), where isolated subsystem is described by
For each isolated subsystem, an equivalent subsystem is
defined by its system matrix
Afzq(f):A”(g)+p(g)I’La 2:172aaM (16)
where I; is identity matrix of the same size as A;;; p(§)
represents the interaction bound and can be also used as a
tuning parameter. The question how to find appropriate
p(§) is still open; here we put it equal to zero or use
a norm of interconnection matrix maxy, ||Amk| from (3)
as a first estimate. Above Lemmas and observations give

up the following results which summarizing in the next
section

3 ROBUST DECENTRALIZED
CONTROLLER DESIGN

The proposed decentralized control design strategy is
based on the design of local robust controllers. The main
aim is to develop the design procedure on subsystems
level so that by a solution of M robust control problems of
subsystems’ size, the stabilizing decentralized control for
the overall system is obtained. This approach has been
motivated by Equivalent Subsystems Method proposed
in [2] for decentralized control in the frequency domain:
the crucial point is to find a suitable representation of
interactions in the subsystem controller design and to use
a subsystem stability degree and above observations as a
stabilizing tool.

ASSERTION 3.1. Let 'yj’?j be stability degree of j-subsys-
tem for k-vertex and

Pl = Dl + ESF;Cojl 4,5 = 1,2,... M3 pff; — min .

(17)
If for the system (8), the condition (12) holds, system is
stable.

From above observation, the following steps can give
positive results to robustly stabilize the closed-loop sys-
tem.

1. For a chosen p(§) design the robust controller with
gain matrix F; for j-subsystem (15) in such a way
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that (12), (14), and (17) holds. Then the following
subsystem is robustly stable with guaranteed cost

DE,+A5T, j=1,2,... . M; k=1,2,...,N.

2. Design a gain matrix F} so that the following condi-
tion holds

7:7&]‘72:

3. Design a gain matrix F; so that trace(ij) is mini-
= diag{pf;}, i #J
4. When all subsystems are robust stable with guaran-

teed cost, check the robust stability of complex sys-
tem.

mized, where V}k

5. If the complex system is not robustly stable with per-
formance, increase p(§) > 0 and return to first point.
6. If the complex system is not robustly stable with per-
formance, an alternative way to get a robust stability
of complex system is as follows: put F = {F;} = aF;

a > 0 and using V-K iteration procedure using LMI

for a =1 and complex system calculate matrices Py,

k=1,2,...,N; G,H (21) and then « > 0.

We have to note that the above procedure does not
guarantee the stability of the complex system but the
above procedure gives the way how we can obtain the
robust stability of the complex system.

Note that for the design of a robust controller with
guaranteed cost on the subsystem level and checked ro-
bust stability of the complex system we use a robust sta-
bility notion based on the parameter dependent Lyapunov
function (PDLF)

N
= &P where Py = Bl > 0.
k=1

(18)

LEMMA 3.1 [4,11]. If there exist matrices H,G and N
symmetric positive definite matrices P, such that for all
k=1,...,N

S11(€) S12()
[Su(f)T —(G+ GT) <0 (19)
where
S11(§) = HD.(§) + D(§)"H" +Q + C, FTRFC,,

S12(§) = P(€) + De(€) G — H
( ) Ddc( )+Dmc(§)a
C,, = diag{Cy;}, F = diag{F;}

with performance

oo
Jz/ (UTQv—i—uTRu)dt,
0
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Q@ and R are positive definite (semidefinite) and definite
weighting matrices, respectively; then the closed loop sys-
tem (7) or (8) is robustly stable with guaranteed cost.

Note that matrices H and G are not restricted to
any special form; they were included to relax the con-
servatism of the sufficient condition. Note that when the
robust stability is checked for complex system, matrix F'
is known, therefore on subsystem level LMI (19) is used
accordingly. Because of linearity for the k-th vertex (19)
is read as follows

St St
<0 20
(S)" —(G+GT) 2
where
Sy =HDY 4+ (DM"H" +Q+CIFTRFC,,
Sty =P, +(DN'G-H; k=1,2,....,.N, (21)

Df = D, + Dy,

mc)

C,, = diag{C,;}, F = diag{F}}.

4 EXAMPLES
4.1 Boiler-turbine model

The proposed decentralized control design procedure
has been used to design a PI decentralized controller for
a linearized model of three interconnected subsystems:
boiler-turbines. To simplify the description we consider
three identical subsystems.

The boiler-turbine dynamics can be described by a
nonlinear model of the 3" order, [1,8]. For individual
subsystems we use the linearized model derived in [1], re-
spective to one of operating points. The isolated subsys-
tem dynamics is described by (15), subsystem matrices
A;i(&), Bii(€) are from polytopic uncertainty domains
given by (2), with 2 vertices

—0.0025 0 O —0.0027 0 0O
Al =1 00694 —0.10]|, A% =] 0.0700 —0.10
—0.0067 0 O —0.0065 0 0

0 —1.3976 1.6588 0 —1.360 1.650

100
010|,i=1,23.

001

0.9 —0.3490 —0.15 0.95 —0.3360 —0.140
Bi=|0 14155 0 JBE=| 0 1420 0 ,

C; =

The subsystem input vector wu; includes: the valve posi-
tion for fuel flow, steam control and feedwater flow; three
states of the subsystem (vector z;) are: the drum pres-
sure, electric output and fluid density. All three states
can be measured (the third state variable is recalculated
from the measurement of water level deviation). For more
details on boiler-turbine model, see [1].
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drum pressure (kgcmz)

160

0 100 150
50 time (s)

Fig. 1. Drum pressure step response

water level deviation
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8
6
4
2
0 ™
2
4
6
-8
0 50 100 150

time (s)
Fig. 3. Drum water level deviation

feedwater flow

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4

0 50 100 time (s) 150

Fig. 5. Feedwater flow input

As stated above, we consider three identical boiler-
turbine subsystems with interactions, the overall system
model being in the form

A11(§) A12(8) Aws(§) Bi(§) 0 0
= | A21(&) A2z () Aas() | o+ 0 B2 0 |u,
Az1(8) As2(8) Asz(€) 0 0 Bss(¢)

y=x.

Interaction matrices A;; are considered to be the same
for all 7,5 (for simplicity).

005 0 0 0040 0
A= 00050 [, A =] 00040 |,
0 0 0.05 0 0 0.04

i,j=1,2,3, 27&‘7

Since a tight regulation around the working point is re-

quired, a PI controller is used for all outputs (7).
Though the state feedback control is to be designed,

the task is not trivial due to the integral character of

electric output(MW)
140

120 /\
100

80

60

40

20

0 50 100 time (s) 150

Fig. 2. Electric output step response

steam control

0.8
0.6
0.4
0.2

o /\/\/—\,
-0.2

04
0.6

0 50 100 150
time (s)
Fig. 4. Steam control input

the subsystems and required PI controller structure. (For
comparison, we tried the robust SOF controller design
approach proposed in [9], however, we have not received
reasonable results for this example.)

We designed the decentralized PI controller using the
procedure described in the previous section. To form
equivalent subsystems (16), we use p = 0.1. The subsys-
tem robust controllers designed for equivalent subsystems
by a solution of (20) are

—-0.2201 —0.0035 -—0.0144
Kp, = | —0.0061 —-0.0072 0.0001

k2 Y

—0.0036 —0.0059 —0.1261

—-0.0394 0.0044  0.0134
0.0004 —0.0051 0.0001
0.0104 —0.0034 —0.0418

Ky, = L i=1,2,3.

The resulting closed loop interconnected system is stable
with maximum real part of system eigenvalues —0.0502.
It should be noted that the local subsystem controllers
can be designed simultaneously.

Simulation results for the closed loop complex, inter-
connected system are illustrated on the responses of the
first subsystem. Step responses of output variables are in
Figs. 1, 2 and 3.

Control inputs respective to steam control and feed-
water flow are in Figs. 4 and 5.

4.2 Four cooperating DC motors

In the second example we consider the linear model
of four cooperating DC motors. The problem is to design
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4 From: In(1) From: In(2) From: In(3) From: In(4)
Amplitude
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0 20 40 0 20 40 0 20 40 0 20 40

time (s)

Fig. 6. Step response of system

four local PI controllers for a large scale DC system which
will guarantee robust stability and performance of the
closed-loop uncertain system. The system model is given
by (1) and (2) with a time invariant matrix of 16 order
type affine uncertain structure with 4 input and 4 output
variables. The goal of design procedure is to design 4
PI controllers which guarantee the robustness properties
and performance for closed-loop system.

Decentralized PI controller has the following parame-
ters

Kp = diag{—0.5619, —0.2429, —0.7033, —0.3685} ,
K = diag{—0.1929, —0.1665, —0.2758, —0.2336} .

V-K iteration for o = 1 in LMI has ¢, = —0.06122 < 0,
it shows that closed-loop system with above PI controller
is robustly stable with the guaranteed performance.

6 CONCLUSIONS

In this paper, a new approach to design a robust out-
put feedback PI controller for complex large-scale systems
with a state decentralized structure is developed. The pro-
posed design method is based on the Generalized Gersh-
gorin Theorem and the LMI method to design robust PI
controller guaranteeing feasible performance achieved in
subsystems for the full system and therefore the proposed
method excludes limit of system order in BMI solution. A
robust decentralized PI controller has been designed us-
ing the polytopic description of the uncertain system and
applying the robust optimal control design procedure in-
cluding cost function to state-space subsystems generated
in each vertex of the polytopic uncertainty domain.
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Amp 1-st output

2

5

>

mp 2-nd output

\

1

p 3-rd output

.

Amp 4-th output

N

20 40 time (s)

Fig. 7. Output signals of closed-loop feedback system

The main advantage of the proposed approach is that
the order of the PI design procedure reduces to the order
of the particular subsystem. The design strategy has been
tested on various examples; the two presented in this
article deal with three boiler-turbine subsystems and four
cooperating DC motors with integral action, for which
a robust PI controller has been designed. There is still
many open questions starting with appropriate evaluation
of interaction framework in the equivalent subsystem,
feasibility or convergence, nevertheless, based on testing
examples, the proposed control design scheme is believed
to indicate the alternative in decentralized control, which
can bring useful results.
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