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PROBABILITY DENSITY FUNCTIONS OF
VOLTAGE SAGS MEASURED INDICES

Zvonimir KLAIĆ — Damir ŠLJIVAC — Zoran BAUS
∗

Voltage sags can cause interruptions of industrial processes, which could result as a malfunction of equipment and
considerable economic losses. Thus, it is very useful to see certain rules of voltage sags occurrence due to duration and
depth.

This paper presents statistical analyses of voltage sags in several domestic and industrial transformer stations. Voltage
sag probability functions are calculated from actual measurement data, by means of a hill climbing algorithm. Lognormal
and Weibull frequency distribution functions are used to describe distribution of measured voltage dips.
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1 INTRODUCTION

Electrical appliances become more complex due to
complicated functions and mutual interactions. There are
many advantages of automated manufactory systems and
variable speed drives in industry, as well as information
systems and fluorescent lights at the public and domestic
consumers. Therefore, development of these systems and
equipment is very fast and its usage is growing. Most of
nowadays electrical equipment is more sensitive to devi-
ations from sinusoidal supply voltage. At the same time,
the same or other equipment cause modifications to the
characteristics of the supply voltage, [1, 2].

Costs of power quality disturbances (interruptions,
voltage sags, harmonics, surges etc) are very significant
and have the highest impact on industry. In order to min-
imize those costs, it is necessary to analyze the electrical
system and then try to determine possible future prob-
lems. Only after that, it is possible to improve the system
in a right way.

2 VOLTAGE SAGS

Voltage sags are the most frequent cause of power
quality problems. They introduce considerable economic
losses and have the high impact on industry and other
consumers. The most sensitive applications are continu-
ous production lines, (paper mill, cement production etc)
lighting and safety systems and computer equipment. Al-
though voltage sag could not cause such damage in in-
dustry as an interruption could, the total damage due to
voltage sags is larger, because in a long period (a year
or longer) there are more sags then interruptions, [3, 4].
Thus, from an economic point of view the dip frequency,
ie the annual number of dips, is very important. When

assessing the total annual dip related cost, one has to
find out how many dips are expected. Some rough esti-
mation can be acquired from measurement over a shorter
period. Another approach is to use stochastic mathemat-
ical methods for assessing more precise figures.

2.1 RMS Variation Indices

SARFI (System Average RMS Variation Frequency In-

dex ) is a power quality index that provides a count or rate
of voltage sags, swells, and/or interruptions for a system.
It should be seen as the voltage sag equivalent of SAIFI
as defined for interruptions [5]. SARFI can be defined as
a single monitoring location, a single customer service,
a feeder, a substation, groups of substations, or for an
entire power system.

SARFIX is a power quality index that represents the
average number of specified RMS variation measurement
events that occurred over the assessment period, where
the specified disturbances are those with a magnitude less
than x for sags or a magnitude greater than x for swells

SARFIX =
NE

D
· 30 days (1)

where NE is the number of events and D is the number
of days measured at a single site.

System Instantaneous Average RMS (Variation) Fre-
quency Index (SIARFIX ) represents the average num-
ber of specified instantaneous RMS variation measure-
ment events that occurred over the assessment period.
The specified disturbances are those with a magnitude
less than x for sags or a magnitude greater than x for
swells and duration in the range of 10–500ms [6].

SMARFIX is defined for variations having durations
in the range of 500 ms to 3 seconds for sags and swells
and in the range of 10 ms to 3 seconds for interruptions.
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Fig. 1. Voltage events for domestic transformer stations

Table 1. Voltage events for domestic transformer stations

Phase <20 20 0.1 0.5 1 3 20 >60
L1,L2,L3 –100 –0.5 –1 –3 –20 –60

(ms) (ms) (s) (s) (s) (s) (s) (s)

Surge>10% 1040 10

Sag>10%

10–15% 152 30 10 14

15–30% 15 9 20 4

30–60% 1 5 3 3

60–99% 3 2 3 3

Interruption 2 18

System Temporary Average RMS (Variation) Fre-
quency Index (STARFIX ) is defined for temporary vari-
ations which have durations in the range of 3–60 seconds.

3 PROBABILITY DISTRIBUTION FUNCTIONS

Probability distribution functions are mathematical
equations allowing a large amount of information, charac-
teristics and behavior to be described by a small number
of parameters [7]. A probability distribution function has
an associated density function f(x), that represents the
likelihood that a random variable x will be a particular
value. In this paper, lognormal and Weibull probability
functions are used for describing actual voltage dip dis-
tributions.

When probability distribution curves are used to rep-
resent empirical data, the information associated with
thousands of data points can be modeled with one or
two parameters.

3.1 Chi Squared Criterion

The chi squared criterion is used to identify distribu-
tion function parameters, and it is also used to compare
the fit of lognormal and Weibull functions to a voltage
dip distribution. Chi squared criterion (χ2 ) indicates how
well a model matches the data that it is supposed to

represent [7]. When a number χ2 is smaller, it means
that modeled curve better matches actual data curve. Chi
squared criterion is based on density functions and data
bin densities

χ2 =
∑

bins

(Observed Freq. in Bin − Expected Freq. in Bin)2

Expected Freq. in Bin
,

(2)

Observed Freq. in Bin =
Number of Samples in Bin

Total Number of Samples
, (3)

Expected Freq. in Bin =

∫ b

a

f(x)dx = F (b)− F (a) ,
(4)

Bin = a ≤ x ≤ b . (5)

A hill climbing algorithm is used for minimizing the chi
squared error of a curve fit, [7]:

1. Initialize parameters to achieve a reasonable fit.

2. Set ∆ equal to the precision desired for each parame-
ter.

3. Compute χ2 .

4. Start with the first parameter, p .

5. Compute χ2
test

, based on ptest = p+∆.

6. If χ2
test < χ2 then set p = ptest , set χ2 = χ2

test , and
go to step 9.

7. Compute χ2
test , based on ptest = p−∆.

8. If χ2
test < χ2 then set p = ptest , set χ2 = χ2

test .

9. Repeat steps 5–9 for all parameters.

10. Has χ2 changed its value since step 4? If so go to
step 4.

11. End.

This algorithm guarantees that the parameters are lo-
cally optimal, so initial parameters, which generally rep-
resent the shape of the data set, were obtained by trial
and error.

4 FITTING CURVES TO MEASURED DATA

Measurements were performed on several (26) MV/LV
transformer stations with domestic and industrial con-
sumers. Most of domestic transformer stations were lo-
cated in urban area, and industrial consumers were paper
mill, cement factory, dairy and sugar industry, brewery,
wine- cellar, beverage industry, wood and rubber indus-
try. Measurement period used for each consumer was one
week, according to the European standard EN 50160.

4.1 Domestic Consumers

Table 1 and Figure 1 represent summed voltage events
for domestic transformer stations measurements. Total
number of measured voltage sags is 277 and most voltage
sags are found in two depth categories: 10–15% Un and
15–30% Un .

Figures 2 and 3 (retrieved from Table 1) represent
10–15%Un and 15–30%Un voltage sag distributions, and
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Fig. 2. 10–15%Un voltage sag distribution — domestic trans-
former stations

Fig. 3. 15–30%Un voltage sag distribution — domestic trans-
former stations

Table 2. Calculation of lognormal distribution for 10–15%Un sags

Duration <20 s 20–100 s 0.1–0.5 s 0.5–1 s 1–3 s 3–20 s 20–60 s >60 s χ2

Number fi 152 30 10 14 0 0 0 0
Lognormal 1 σ1 = 19 µ1 = 12

Logn 1 fti 152.256 32.58097 6.921776 3.544178 1.223411 0.19339 0.066147 0.033557
(fi − fti)2/fti 0.00043 0.204457 1.368935 30.84614 1.223411 0.19339 0.066147 0.033557 33.93647

Lognormal 2 σ2 = 16 µ2 = 12.5
Logn 2 fti 151.680 33.47564 7.313201 3.786442 1.328765 0.215409 0.074621 0.038135

(fi − fti)2/fti 0.00067 0.360861 0.987104 27.55008 1.328765 0.215409 0.074621 0.038135 30.55565

Lognormal 3 σ3 = 15.8 µ3 = 12.5
Logn 3 fti 151.552 33.53143 7.341888 3.804675 1.336914 0.217159 0.075301 0.038504

(fi − fti)2/fti 0.00132 0.37192 0.962363 27.32024 1.336914 0.217159 0.075301 0.038504 30.32373

from figures, it is obvious that there were much more
voltage sags in 10–15%Un depth category (206), than in
15–30%Un (48).

The next step was to compare above mentioned dis-
tributions to lognormal and Weibull probability distribu-
tions, by the chi squared criterion. A hill climbing algo-
rithm, which is used for minimizing the chi squared error
of a curve fit, was performed by Visual Basic program.

For each voltage sag distribution, initial parameters
that already represent the general set of a data set were
obtained by trial and error. Only after that, algorithm
was initialized by these initial parameters, and optimal
parameters were obtained in several steps, as required.

Table 2 represents calculation of parameters for log-
normal distribution for 10–15%Un sags, domestic con-
sumers. Three steps were needed to calculate optimal pa-
rameters: σ = 15.8 and µ = 12.5 with χ2 = 30.32373.
Thus, lognormal probability distribution which best de-
scribes 10–15%Un voltage dip distribution is

f(x) =
1

15.8
√
2πx

exp
[

−
(lnx− 12.5)2

2 · 15.82
. (6)

Optimal parameters for Weibull function are α = 1,
β = 0.04 and χ2 = 43.51809. So, the best Weibull prob-
ability function which describe 10–15%Un voltage dip

distribution is

f(x) = 0.04x0.04−1 exp
(

−x0.04
)

. (7)

Although both probability distributions (lognormal
and Weibull) fit 10–15%Un voltage dip distribution
pretty well and their curves have similar shapes (figure
4), lognormal probability distribution has lower chi square

error χ2 = 30.32373. So, lognormal probability distribu-
tion with parameters σ = 15.8 and µ = 12.5 is most
suitable for describing 10–15%Un voltage dip distribu-
tion.

Similar procedure was applied to calculate optimal
parameters for 15–30%Un sags. But, it is worth noting
that there are significantly less data in this voltage depth
category (Fig. 3).

Optimal parameters for lognormal distribution σ =
1.398 and µ = 0.773 with χ2 = 12.08993 were obtained
in four steps, Fig. 5. Although curves Lognormal3 and
Lognormal 4 have almost identical shapes, for Lognor-
mal 3 χ=12.15388, which is higher value of Lognormal 4.
Thus, lognormal probability distribution which best de-
scribes 15–30%Un voltage dip distribution is

f(x) =
1

1.398
√
2πx

exp
[

−
lnx− 0.773)2

2 · 1.3982
]

. (8)
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Fig. 4. Calculated probability distributions for 15–30%Un voltage
sags — domestic transformer stations

Fig. 5. Lognormal probability distributions for 15–30%Un voltage
sags domestic transformer stations

Fig. 6. Calculated probability distributions for 15–30%Un voltage
sags — domestic transformer stations

Fig. 7. Voltage events for industrial transformer stations

Optimal parameters for Weibull function are α =
2.099, β = 1.439 and χ2 = 13.86839 and the best

Weibull probability function which describes 15–30%Un

voltage dip distribution is

f(x) =
1.439x1.439−1

2.0991.439
exp

[

−
( x

2.099

)1.439]

. (9)

Again, lognormal probability distribution has lower chi
square error (χ2 = 12.08993). So, lognormal probability
distribution with parameters σ = 1.398 and µ = 0.773
is most suitable for describing 15–30%Un voltage dip
distribution.

In this case, both probability distributions (Fig. 6) do
not fit 15–30%Un voltage dip distribution as well as in
the previous case. Possible reason for this is the fact that
there were less voltage dips in this depth category, so
there are also less data. Nevertheless, both probability
curves in this case have significantly different shape (first
ascending than descending) than in the previous case
(only descending shape).

4.2 Industrial Consumers

Measured voltage events for industrial consumers are
represented by Table 3 and Fig. 7. Total number of
measured voltage sags is 419. As in case of domes-
tic consumers, most sags are found in 10–15%Un and
15–30%Un depth categories. Figures 8 and 9 represent
10–15%Un and 15–30%Un voltage dip distributions, and
as in case of domestic consumers, there were much more
voltage sags in 10–15%Un depth category (342), than in
15–30%Un (62).

Calculation of parameters for lognormal distribution
for 15–30%Un voltage sags were carried out in several
steps. Optimal parameters are σ3 = 5.325, µ3 = 5.937
and error χ2 = 12.19157 which give lognormal probabil-
ity distribution

f(x) =
1

5.325
√
2πx

exp
[

−
(lnx− 5.937)2

2 · 5.3252
]

. (10)

Derived optimal parameters for Weibull function are
α = 258.126, β = 0.335 with error ξ2 = 15.12644. So,
the best Weibull probability function which describes 10
15 % Un voltage dip distribution is

f(x) =
0.335x0.335−1

258.1260.335
exp

[

−
( x

258.126

)0.335]

. (11)
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Fig. 8. 10–15%Un voltage sag distribution — industrial trans-
former stations

Fig. 9. 15–30%Un voltage sag distribution — industrial trans-
former stations

Fig. 10. Calculated probability distributions for 10–15%Un volt-

age sags — industrial transformer stations

Fig. 11. Weibull probability distributions for 15–30%Un voltage

sags — industrial transformer stations

Table 3. Voltage events for industrial transformer stations

Phase <20 20 0.1 0.5 1 3 20 >60
L1,L2,L3 –100 –0.5 –1 –3 –20 –60

(ms) (ms) (s) (s) (s) (s) (s) (s)

Surge>10% 79 10 1

Sag>10%

10–15% 230 81 25 2 3 1
15–30% 10 27 18 2 5
30–60% 4 6 5
60–99%
Interruption 6 3 3 13

Figure 10 represents lognormal and Weibull probabil-
ity functions whose parameters fit 10–15% voltage dip
distribution for industrial transformer stations. Curve
shapes in this figure are very similar to those in Fig. 4
which represents probability distributions for domes-
tic consumers. Again, both probability distributions fit
10–15%Un voltage dip distribution pretty well, but log-
normal probability distribution has lower chi square error
(χ2 = 12.19157). So, lognormal probability distribution
with parameters σ = 15.8 and µ = 12.5 is most suit-

able for describing 10–15%Un voltage sag distribution
for industrial transformer stations.

Next equations are lognormal and Weibull probabil-
ity distributions with optimal parameters for 15–30%Un

voltage dip distribution for industrial transformer sta-
tions (Fig. 9).

Lognormal optimal parameters σ3 = 1.775 and µ3 =
1.065.
Error χ2 = 10.13152.
Lognormal probability distribution

f(x) =
1

1.775
√
2πx

exp
[

−
(lnx− 1.065)2

2 · 1.7752
]

. (12)

Weibull optimal parameters α5 = 3.7 and β5 = 1.
Error χ2 = 20.42612.
Weibull probability distribution

f(x) =
1

3.7
exp

[

−
x

3.7

]

. (13)

Figure 11 shows five trials in deriving Weibull proba-
bility distributions for 15–30%Un sags. Although func-
tion Weibull 5 has minimum χ2 error, its shape does not
fit measured voltage dip distribution very well, especially
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Fig. 12. Calculated probability distributions for 15–30%Un volt-
age sags — industrial transformer stations

Table 4. RMS variation indices for the group of domestic substa-
tions

x SARFIX SIARFIX SMARFX STARFIX
110 4500.00 4500.00 0.00 0.00
90 1195.71 972.86 210.00 12.86
85 312.86 150.00 150.00 12.86
70 107.14 47.14 47.14 12.86
40 55.71 21.43 34.29 0.00
1 8.57 0.00 8.57 0.00

Table 5. RMS variation indices for the group of industrial substa-
tions

x SARFIX SIARFIX SMARFX STARFIX
110 385.71 385.71 0.00 0.00
90 1847.14 1765.71 64.29 17.14
85 381.43 325.71 42.86 12.86
70 115.71 90.00 12.86 12.86
40 51.43 25.71 12.86 12.86
1 51.43 25.71 12.86 12.86

in a time range of 20ms–4 s. On the other hand, curves
Weibull 1 and Weibull 2 fit measured values pretty well,
but only partially. Weibull 1 fits a part from 20 ms to
1 s, and Weibull 2 farther than 1 s. This fact gives the
idea that distribution of such shape could be described
more accurate by two Weibull functions.

In this case, lognormal probability distribution not
only has lower chi square error (χ2 = 10.13152), but
also its shape fits measured dip distribution much better
than Weibull function (Fig. 12). The shape of lognormal
distribution function first ascends and then descends, as
well as distribution of measured sags, while the shape of
Weibull function only descends.

5 CALCULATION OF RMS

VARIATION SITE INDICES

SARFIX indices are very suitable due to their possibil-
ity of comparing different sites in terms of the RMS volt-

age variations. Here, two groups of substations are com-
pared by SARFIX indices: voltage events for domestic
and for industrial transformer stations. Voltage sag data
from Tables 1 and 3 are used for calculating RMS vari-
ation indices. Duration of all measurements was 7 days
and values in Tables 4 and 5 are recalculated to present
values of voltage events per 30 days.

The calculated values are commonly expected. The Sys-
tem Average RMS-variation Frequency Index for indus-
trial transformer stations is larger (SARFI90 = 1847.14)
than for the group of domestic transformer stations
(SARFI90 = 1195.71). It is reasonable to assume that
larger number of sags at industrial transformer stations
occurred due to the industrial loads and equipment.

In both cases, the number of sags decrease rapidly with
the voltage threshold decrease. At the domestic group,
there are only 312.86 sags below 85% and only 107.14
below 70% nominal voltage, of the total 1195.71 sags
per month. The number of sags at the industrial group of
substations decrease even faster. The total number of sags
per month is 1847.14, there are only 381.43 sags below
85% and only 115.71 below 70% nominal voltage.

Regarding duration of events, the majority of the sags
are instantaneous, particularly within the group of indus-
trial transformer stations. Of overall 1847.14 sags, only
64.29 are momentary and 17.14 are temporary sags.

However, although RMS variation indices confirm re-
sults obtained by the probability distribution functions,
RMS indices provide easier comparison of voltage sags for
two above mentioned groups of substations.

6 CONCLUSION

Measurements of voltage events for a number of do-
mestic and industrial transformer stations were per-
formed, which enabled the detailed statistical analysis
and derivation of probability density functions.

A measurement period used for every single consumer
was one week. The chi squared criterion was used to
identify the distribution function parameters, and was
also used to compare the fit of lognormal and Weibull
functions to a voltage dip distribution. Furthermore, a hill
climbing algorithm used for minimizing the chi squared
criterion, and the best probability distributions used for
fitting the measured data were presented and analyzed in
the paper.

Although there were more events with industrial con-
sumers than domestic, the most number of measured volt-
age dips for both consumer groups were in two depth cat-
egories: 10–15% Un and 15–30% Un . So, these two depth
categories were analyzed and described by means proba-
bility functions.

10–15% Un voltage dip distribution were described
pretty well by both lognormal and Weibull probability
distributions, in both cases — domestic and industrial
consumers. However, in both cases lognormal probability
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distribution had lower chi square error. So, lognormal
probability distribution is most suitable for describing
10–15% Un voltage dip distribution for both groups of
consumers.

In the case of 15–30% Un voltage dip distribution, do-
mestic consumers, both probability functions don’t fit it
as well as in the previous depth category. Although log-
normal and Weibull functions have similar shapes, log-
normal probability distribution has lower chi square er-
ror. In the same depth category, for industrial consumers,
Weibull probability distribution has higher chi square er-
ror, and also does not fit basic shape of measured dip
distribution.

So, according to above calculations and analyses, for
both groups of consumers, domestic and industrial, log-
normal probability distribution is most suitable for de-
scribing measured voltage sag distributions.

RMS variation indices confirm results obtained by
probability distribution functions, and provide easier
comparison of voltage sags characteristics for two anal-
ized groups of substations.

References

[1] FERRACCI, P. : Power Quality, Cahier Technique Schneider
Electric no. 199, Oct 2001.

[2] Power Quality in European Electricity Supply Networks — 1st

edition, Eurelectric, Belgium, Feb 2002.

[3] BOLLEN, M. H. J. : Understanding Power Quality Problems:
Voltage Sags and Interruptions, IEEE Press, New York, 1999.

[4] DJOKIĆ, S. Ž.—MILANOVIĆ, J. V.—CHAPMAN, D. J.—

McGRANAGHAN, M. F. : Shortfalls of Existing Methods for
Classification and Presentation of Voltage Reduction Events,
IEEE Transactions on Power Delivery 20 No. 2 (April 2005).

[5] BOLLEN, M. H. J.—YU-HUAGU, I. : Signal Processing of
Power Quality Disturbances, IEEE Press, Piscataway, NJ, 2006.

[6] BROOKS, D. L.—DUGAN, R. C.—WACLAWIAK, M.—SUN-
DARAM, A. : Indices for Assessing Utility Distribution System
RMS Variation Performance, IEEE Trans. on Power Delivery 13

No. 1 (Jan 1998), 254–259.

[7] BROWN, R. E. : Electric Power Distribution Reliability, Marcel
Dekker, Inc., New York, 2002.

[8] PARK, C-H.—JANGG. : Stochastic Estimation of Voltage Sags
in a Large Meshed Network, Transactions on Power Delivery 22

No. 3 (July 2007).
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