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ANALYTIC ROOT LOCUS AND LAMBERT W FUNCTION
IN CONTROL OF A PROCESS WITH TIME DELAY

Brian COGAN
∗
— Annraoi M de PAOR

∗∗

Recently, the Lambert W function has arisen in the analysis of many systems including a restricted class of time-delay
systems. An alternative approach to this analysis, based on the well-established root locus method, is shown here to contain
the Lambert W function as a special case.

As a purely illustrative example of the equivalence between the Lambert W function and analytic root locus a system
comprising a Proportional controller with a time-delay process is analysed. Controller designs based on rightmost eigenvalue
location and the dominant eigenvalue method are described.
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1 ORIGIN OF THE LAMBERT W FUNCTION

Johann Heinrich Lambert (1728-1777) was a multi-
talented scientist and philosopher who produced impor-
tant work in fields such as number theory, optics, meteo-
rology, and astronomy — to name but a few. Some notes
on Lambert’s life and work may be found in [1]. For fur-
ther biographical information and details of Lambert’s
contributions to the mathematical theory of perspective
see [2].

In 1758 Lambert derived a series solution to the trino-
mial equation

x = q + xm . (1)

In 1779 Euler studied the following transformed version
of (1)

xα − xβ = (α− β)vxα+β . (2)

When considering a special case of his series solution to
(2) Euler introduced a function w that satisfies

we−w = x . (3)

A related function W (z) that solves

W (z)eW (z) = z (4)

has become know as the Lambert W function. References
to original papers and further details of these derivations
may be found in [1].

The Lambert W function has found applications in an
astonishing diversity of disciplines including celestial me-
chanics [3], electromagnetism [4], supply chain dynamics
[5], quantum theory [6, 7], and solar physics [8]. Typically,
the Lambert W function is used in these references to de-
rive closed-form solutions where previously this was not
possible. Computer algebra systems such as Maple [9],
Matlab [10], and Mathematica [11] implement the Lam-
bert W function.

2 ANALYTIC METHOD FOR

DRAWING ROOT LOCUS PLOTS

FOR SYSTEMS WITH TIME DELAY

If the process G(s) has time delay L > 0 the charac-
teristic polynomial of the system in Fig. 1 is

p(s) = N(s) + ke−sLM(s) (5)

where N(s) and M(s) are polynomials of degree n and
m respectively, with m ≤ n , s = σ + jω and the gain
k is a real number. The roots of (5) are the eigenvalues
of the system. In root locus terminology, the poles and
zeros of the root locus are given by the roots of N(s) = 0
and M(s) = 0, respectively. The root locus of (5) consists
of the paths traced out in the (σ, ω) plane by the roots
of (5) as k varies and these paths are called the root
locus branches. As for the delay-free case, the root loci for
time-delay systems are symmetrical about the real axis,
but unlike the delay-free case, the number of root locus
branches is infinite. Setting k = 0, these branches start
at the poles (roots of N(s) = 0) and at σ = −∞ ; setting
k = ±∞ , these branches terminate at the zeros (roots
of M(s) = 0) and at σ = +∞ . Root locus branches
that do not terminate at a zero approach σ = +∞ along
asymptotes. These asymptotes are infinite in number and
parallel to the real axis.

A geometric method, consisting of rules for drawing
the root locus of (5) when L = 0 may be found in
standard texts such as [12]. An extended set of these
rules for drawing the root locus of (5) with L > 0 may
be found in [13–15]. Alternatively, when L = 0 there is
an analytic method [16, 17] for drawing the root locus of
(5). This method consists of deriving an equation for the
root locus curves. A root locus equation for L > 0 will
now be derived. In the following the real and imaginary
parts of the polynomial P are written as ReP and ImP

respectively and e−sLM(s) is written as M̂(s).
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Fig. 1. Fig. 1 Standard unity negative feedback system. D(s) represents disturbance signals and R(s) represents the reference signal.

Fig. 2. Illustrative example of a root locus diagram for a time-delay
system.

Equation (5) may be rewritten as

p(s) = N(s) + kM̂(s) = 0 . (6)

(6) can be rearranged as k = −N(s)

M̂(s)
= −ReN−jImN

ReM̂+jImM̂
or

k =
−ReNReM̂ − ImNImM̂ + j(ReNImM̂ − ImNReM̂)

(ReM̂)2 + ImN̂)2
.

(7)

If k is a real number (7) gives the root locus equation

ReN ImM̂ − ImNReM̂ = 0 . (8)

The plot of (8) in the (σ, ω) plane gives the entire root
locus of (5) for −∞ < k < ∞ , that is, (8) contains both
the positive gain root locus, corresponding to k > 0,
as well as the negative gain root locus, corresponding
to k < 0. Given the root locus equation (8), the gain
equation (7) becomes

k =
−ReNReM̂ − ImN ImM̂

(ReM̂)2 + (ImM̂)2
. (9)

(9) describes a set of curves in the (σ, ω)-plane. For a
given value of k these curves intersect the root locus
curves at the eigenvalues of (6) corresponding to that
value of k .

For a different and less general analytic approach to
root locus of certain time-delay systems see [18].

Example 1. As an example of the use of (8) and (9)
consider the characteristic equation of a system compris-
ing a proportional controller and an integrator with unit
time delay [15]

s+ ke−s = 0 . (10)

Using (8) we can say that (10) has root locus equation

ω cosω + σ sinω = 0 . (11)

Using (9) we can say that (10) has gain equation

eσ(ω sinω − σ cosω) = k . (12)

Equation (11), the root locus equation for (10), is plotted
in Fig. 2. Other examples of root locus diagrams for time-
delay systems may be found in [18–20].

Figure 2 shows the root locus diagram for a system
with characteristic equation p(s) = s + ke−s , k ∈ ℜ1 ,
ie proportional control of a single integrator with unity
time delay. The lines are the paths of the eigenvalues as
k varies and these paths are referred to as the root locus
branches. Arrows indicate the direction of the eigenvalues
with increasing |k| . There is a pole at s = 0 (indicated by
an “×”) — a root locus branch starts at this pole when
k = 0. This branch meets another branch coming from
σ = −∞ to form a breakpoint. These two branches then
leave the σ -axis, cross the imaginary axis and approach
σ = ∞ . In addition there is an infinite number of other
root locus branches that are parallel to the real axis and
start at σ = −∞ and approach σ = ∞ along asymptotes.
If, for a chosen value of k , a plot of the gain equation (12)
were superimposed onto Fig. 2 we would see another curve
intersecting the root locus branches orthogonally at the
eigenvalues associated with the chosen value of k .

Example 2. For another example of a root locus dia-
gram consider Fig. 3 [19, 20].

Figure 3 shows the primary branches of the root locus
of p(s) = s(s+ 1/τ) + k(s+ F )e−s — the characteristic
equation for a PI controller C(s) = k2(1 + F/s) with a
first-order lag plus time-delay (FOLPD) process: G(s) =

k1e
−sL

/

(s + 1/τ). In Fig. 3 we have used k1k2 = k >
0, L = 1, τ = 5 and F = 0.25. As is conventional,
poles are indicated by “×”’s and the zero is indicated
by a “©”. A branch starts at each of the poles s =
0 and s = −1/τ . One of these branches ends at the
zero at s = −F . The other branch travels to the left
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Table 1. Root locus equations and gain equations derived using equations (8) and (9) respectively.

polynomial Root locus equation Gain equation

s+ ke−s ω cosω + σ sinω = 0 eσ(−σ cosω + ω sinω)

(s+ a) + ke−s ω cosω + (a+ σ) sinω = 0 eσ
(

−(a+ σ) cosω + ω sinω
)

(s+ a) + ks2e−s ω(2aσ + σ2 + ω2) cosω −eσ

(σ2+ω2)2 [(σ
2(a+ σ) + (σ − a)ω2) cosω

−(aσ2 + σ3 − aω2 + σω2) sinω = 0 +ω(2aσ + σ2 + ω2) sinω]

s(s+ a) + k(s+ F )e−s ω(aF + 2Fσ + σ2 + ω2) cosω+ −eσ

(F+σ)2+ω2 [
(

σ(a+ σ)(F + σ)
(

σ(a+ σ)(F + σ) + (a− F + σ)ω2
)

sinω = 0 +(a− F + σ)ω2
)

cosω
−ω(aF + 2Fσ + σ2 + ω2) sinω]

-1.5

Real

Imaginary

-1.0 -0.5 0.0 0.5 1.0
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Fig. 3. The primary branches of a root locus diagram for a sys-
tem with time delay, drawn for k > 0 , showing a more intricate

topology than the Lambert W function.

along the imaginary axis until it meets one of the infinite
number of branches that start at σ = −∞ and end at
σ = +∞ . When these two branches meet they form
the leftmost breakpoint. Figure 3 shows a more intricate
topology than the Lambert W function — this reflects
the richer dynamics of the system modelled here.

3 THE EQUIVALENCE BETWEEN

THE LAMBERT W FUNCTION AND

THE ROOT LOCUS EQUATION

3.1 Solution to a transcendental equation in

terms of the Lambert W function

The Lambert W Function W (z) may be used to
solve a restricted type of transcendental equation [22–24].
This approach may be used when the equation is simple
enough to be arranged in the form

W (z)eW (z) = z (13)

where z is a complex number. More typically [23, 24]
equation (13) takes the form

W (z)eW (z) = k (14)

where k is a real number. Consider an example from [24]

(s+ α)2 − ke−sL = 0 . (15)

The Lambert W function approach may be used to solve
(15) for s . First, by taking positive square roots (15) can
be rearranged as

(s+ α)2esL = k =⇒ (s+ α)esL/2 =
√
k =⇒

L

2
(s+ α)e

L

2
(s+α) =

L

2

√
ke

αL

2 . (16)

We now have rearranged (15) as

W (s)eW (s) =
L

2

√
ke

αL

2 . (17)

The term on the right hand side of (17) is a real number

K ∈ ℜ1 so we can write

W (s)eW (s) = K . (18)

Finally

W (s) =
L

2
(s+ α) =⇒ s =

2

L
W (s)− α =⇒

s =
2

L
W

(L

2

√
ke

αL

2 − α
)

. (19)

(19) is a closed-form expression for the roots of (15).

3.2 Plotting the solutions to a transcendental

equation using root locus

It is a simple matter to rearrange (14) as

W (z)−Ke−W (z) = 0 . (20)

(20) is just (10), ie s + ke−s = 0, with the change of
variables s → W (z) or (σ+jω) → (x+jy) – the negative
sign on K is irrelevant here. So the root locus of (10) in
the (σ, ω)-plane is the same as the root locus of (20) in
the (x, y) − plane . Or to put it another way, the paths
traced out in the (σ, ω)-plane by the solutions to (10) are
the same as the paths traced out in the (x, y)-plane by
the solutions to (20). So the root locus diagram of (20)
in the (x, y)- plane is a diagram of W (z) [19].
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Fig. 4. Proportional controller and a first-order time-delay process with time delay L > 0

Another way to see this is to substitute W (z) = x+jy
into (18) to get

W (z)eW (z) = ex{x cos y − y sin y) + j(y cos y + x sin y)}
= K ∈ ℜ1. (21)

Comparing the root locus equation (11) and the gain
equation (12) with (21) we see that the imaginary part of
(21) is the root locus equation (11) and the real part of
(21) is the gain equation (12).

A comparison of the root locus of (10) given in Fig. 2
and the plot of the Lambert W function given in, for
example, [21] and [1] further illustrates this equivalence.

Table 1 gives illustrative examples of characteristic
polynomials along with the corresponding root locus and
gain equations.

3.3 Discussion

The root locus equation has been shown here to con-
tain the Lambert W function as a special case. This is
not surprising as the root locus is a drawing of the roots
of an equation and the Lambert W function is a solution
to the same equation. Unlike the Lambert W function
approach, when using the root locus approach to analyse
solutions to transcendental equations it is not necessary
for the equation to be simple enough to be transformed
into (13) — the properties of the solutions to any equa-

tion of the form p(s) = N(s)+ke−sLM(s) can be studied
with the root locus method. An illustrative example of
such a study, amenable to analysis by both Lambert W
function and root locus, is given in the following section.

4 ILLUSTRATIVE EXAMPLE OF

ANALYTIC ROOT LOCUS AND

LAMBERT W FUNCTION ANALYSIS

4.1 Analysis of a Proportional controller with a

FOLPD process

This illustrative example is studied here as it results
in a characteristic equation that is simple enough to be
analysed using the Lambert W function approach. In fact
a Proportional controller is rarely used with a FOLPD
process as it will give a steady state error for a setpoint

change. It can still be valuable however where distur-
bances are insignificant or are not sustained. A more real-
istic problem — designing a PI controller for an FOLPD
process — cannot be analysed using the Lambert W
function approach but may be studied using root locus
[20].

The transfer function for a first-order lag plus time-
delay (FOLPD) process is given by

G(s) =
k1e

−sL

s+ a
(22)

where k1 is the steady-state process gain, L > 0 is the
time delay of the process. If a 6= 0 then 1/a is the
time constant of the process. “a” can be positive (stable
process), zero (an integrator), or negative (an unstable
process).

The simple Proportional controller (P controller) used
here has transfer function C(s) = k2 , where k2 is the
gain of the controller. Figure 4 shows the P controller
connected with a FOLPD process in a negative feedback
configuration. Letting k = k1k2 , the characteristic equa-
tion of this system is

p(s) = (s+ a) + ke−sL. (23)

Equation (23) can be solved using the Lambert W func-
tion approach:

s+ a = −ke−sL =⇒ (s+ a)esL = −k =⇒

(s+ a)Le(s+a)L = −kLeaL or W (s)eW (s) = −kLeaL.
(24)

From (24) we have W (s) = (s+a)L =⇒ s = (W (s)/L)−
a . Now we can write the following closed-form expression
for the roots of the characteristic equation (23)

s =
(

W (−kLeaL
/

L
)

−a . (25)

Since s = σ + jω and W (s) = x+ jy we can equate the
real and imaginary parts of W (s) = (s + a)L to get the
following relationship between the (σ, ω)-plane and the
(x, y)-plane

(σ, ω) =
( x

L
− a ,

y

L

)

. (26)

Using (26) we can transfer between equations (23) and
(24). Also, (24) may be written as

ex
{

(x cos y − y sin y) + j(y cos y + x sin y)
}

= −LkeaL.

(27)
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Fig. 5. Root locus diagram for (28) drawn in the (x, y)-plane. Positive parameter root locus (k > 0) and negative parameter root locus
(k < 0) branches are given. The stability boundary at x = aL corresponds to the ω -axis in the (σ, ω)-plane. Asymptotes are not shown
but they consist of horizontal lines drawn between the root locus branches parallel to the x -axis and intersecting the y -axis at y = ±nπ .

Using K = kLeaL equation (24) an be rearranged as

W (s) +Ke−W (s) = 0 . (28)

Using either −LkeaL ∈ ℜ1 and (27) or the root locus
equation (8) and gain equation (9) we can derive the root
locus equation for (28)

y cos y + x sin y = 0 (29)

and the gain equation for (28)

ex(x cos y − y sin y) = −LkeaL. (30)

The root locus diagram for (28) is given by plotting (29)
and is shown in Fig. 5.

Some properties of the root locus diagram of (23),
given in Fig. 5, and hence some properties of the system
in Fig. 4 will now be derived.

(a) Setting x = 0 in (29) gives the point where the
root locus intersects the y -axis

y cos y = 0 =⇒ y = 0 or y = ± (2n+ 1)π

2
, n = 0, 1, 2, . . .

(b) As |x| → ∞ , (29) implies that the root locus
branches approach y = ±nπ . So the asymptotes intersect
the y -axis at y ± nπ , n = 0, 1, 2, . . .

(c) The stability boundary in the (σ, ω)-plane is given

by σ = 0. In the (x, y)-plane the stability boundary is

given by x
L − a = 0 =⇒ x = aL . So if aL < −1 the

system cannot be stabilised as the breakpoint lies to the

right of the stability boundary. This result was derived

with more difficulty in [25] using the Nyquist criterion.

(d) The point on the root locus in Fig. 5 where two

branches leave the x-axis is called a breakpoint. We can

find the breakpoint by setting the derivative of the root

locus equation to zero [26]

=⇒ cos y − y sin y + x cos y = 0 . (31)

(31) gives (x, y) = (−1, 0) as the breakpoint. Using (26)

we find the breakpoint in the (σ, ω)-plane
(

(−1− aL)/L , 0
)

.

(e) Root locus branches nearest to the real axis are

called the primary branches, as these are the ones that

cross the imaginary axis first with subsequent crossings

taking place at larger values of k . These branches are

critical when considering stability [14, 15].

A relationship between
∣

∣kz=jω

∣

∣ , the gains at which the
branches cross the stability boundary, and the values of y

at the crossing points, can be established by rearranging
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Fig. 7. The line ω = −mσ in the (σ, ω)-plane

(29) and (30) evaluated at x = aL as follows

(

aL −y
y aL

)(

cos y
sin y

)

=

(

Lk
0

)

=⇒
(

cos y
sin y

)

=
1

a2L2 + y2

(

aL y
−y aL

)(

−Lk
0

)

. (32)

Expanding (32) and invoking cos2 y + sin2 y = 1 we find

k =
±
√

a2L2 + y2

L
. (33)

So for each crossing point we can see that |k| increases
monotonically with |y| . However, there is still an ambi-
guity — for example, if a = 1, L = 3 and y = ±4, (33)
gives k = ±5. So crossings of the line x = aL occur in
pairs — each value of k can have two values for y . This
ambiguity may be removed by substituting (29) into (30)
to obtain

− y cos y

sin y
cos y − y sin y = −Lke(aL−x) =⇒

y

sin y
= Lke(aL−x). (34)

Since sign[y/ sin y] alternates along the y -axis, we know
from (33) and (34) that higher values of |k| imply higher
values of |y| ; if a pair of crossings of the x = aL line

occur for some ki > 0 the next pair of crossings will take
place for some ki+1 < 0 where |ki+1| > |ki| and the
following pair of crossings occur for some ki+2 > 0 where
|ki+2| > |ki+1| > |ki| , etc. These root locus branches
comprise the positive and negative parameter root locus.

(f) The stability limit is reached at x = aL > 0 and
at this point (29) becomes

y cos y + aL sin y = 0 . (35)

(35) can be rearranged as follows

tan y = −y/(aL) . (36)

Figure 6 shows that with aL > 0 the appropriate root
for y is in the range π

2 < y < π . At the point P1 in
Fig. 6, the following equation holds

tan y = −y/(aL) =⇒ y = tan−1(−y/aL) + π . (37)

Consider the iterative algorithm

yk+1 = tan−1
(

−yk/aL
)

+π . (38)

With aL = 0.5 and an initial point of y1 = 2 the iterative
algorithm in (38) converges to y4 = 1.836 . . . . At the
point P1(x, y) = (0.5 , 1.836 . . . ) and (35) gives k =
−3.806 – as can be confirmed using (33). If k > 3.806
the system is unstable.

4.2 Two designs for a Proportional controller

with a FOLPD process

4.2.1 Controller design using optimum stability

When the system parameter is such that the rightmost
eigenvalue is as far to the left as possible in the (σ, ω)-
plane we can say that the system is in a state of optimum
stability in the root locus sense [19, 20, 27]. In the Lam-
bert W function plane the optimum stability point of
the system in Fig. 5 is the breakpoint in the root locus:
(x, y) = (−1, 0). At this optimum stability point, and
with a = 1 and L = 0.5, the gain equation (30) gives

k =
−(x cos y − y sin y)e(x−aL)

L
=

e−(aL+1)

L
= 0.4462 . . .

(39)

Now we have to show that if k = kopt = 0.4462 . . .
ie if we are operating at the point of optimum stability
(x, y) = (−1, 0), then the values of ky at (−1, y), y > 0,
are all greater than kopt .

At the point (−1, y) the root locus equation (29) gives

y cos y − sin y = 0 (40)

and the gain equation (30) gives

− cos y − y sin y = −Lke(aL+1) . (41)
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2
, m = 1 =⇒ ζ =

1/
√
2 , L = 0.5

(40) and (41) may be written as

(

−1 −y
y −1

)(

cos y
sin y

)

=

(

−Lke(aL+1)

0

)

=⇒
(

cos y
sin y

)

=
1

1 + y2

(

−1 y
−y −1

)(

−Lke(aL+1)

0

)

. (42)

Expanding (42) and invoking cos2 y + sin2 y = 1 and
taking the positive root locus branches gives

k =

√

1 + y2

L
e−(aL+1) =

√

1 + y2kopt .

So the point (−1, 0 is indeed the point of optimum sta-
bility. In summary, when k = 0.4462 the rightmost eigen-
value is as far to the left as possible, ie at (−1, 0), and
the system is operating at a point of optimum stability
[19]. This design gives Gain Margin (GM) of 18.6 dB.

4.2.2 Controller design using the dominant eigenvalue
method

The dominant eigenvalue approach to controller design
is to choose that value of k such that the eigenvalues
closest to the origin in the principal strip have a specified
damping ratio ζ , 0 < ζ < 1.

From Fig. 7 we have ζ = 1/
√
1 +m2 so m = 1 gives

damping ratio ζ = 1/
√
2. Also, the line ω = −mσ in

the (σ, ω)-plane maps to the line Y
L = −m

(

x
L −a

)

in the

(x, y)-plane. The equation for this line may be rearranged
as

− y

x
=

−y

−(y/m) + aL
. (43)

The root locus equation is

y cos y + x sin y = 0 . (44)

(44) may be rearranged as

− y

x
= tan y . (45)

(43) and (45) may be solved for y by first noting

tan y =
my

y −maL
. (46)

Figure 8 shows the curves for tan y and my
y−maL on the

same axes.

The iterative algorithm

yk+1 = tan−1 myk
yk −maL

(47)

with values m = 1, aL = 0.5, and initial value y1 = 1,
stabilises to nine decimal places after twenty iterations
giving y = 1.0784 . . . at the point P . Now we can use
(44) to get x = −0.5784 . . . and the gain equation (39)
to calculate k = 0.8324 . . . ie the value of k that ensures
that the eigenvalues closest to the origin in the principal

strip have damping ratio ζ = 1/
√
2.

At the stability boundary k = 3.8068 . . . so the gain
margin for the dominant eigenvalue design is

GM = 20 log10
3.8068 . . .

0.8324 . . .
dB ∼= 13.2 dB.

5 CONCLUSIONS

The root locus equation has been shown to contain
the Lambert W function as a special case. Also, the root
locus is seen to be applicable to a far wider range of
systems than the Lambert W function. Since the system
eigenvalues are central to the root locus approach, it can
offer deeper physical insight.

As an illustrative example, the analytic root locus and
Lambert W function approaches are used to analyze, in
detail, a system comprising a Proportional controller with
a time-delay process and several interesting and useful
properties are derived. Controllers for this system are de-
signed using two techniques — one based on optimum sta-
bility and the other on the dominant eigenvalue method.
The design based on optimum stability gives greater Gain
Margin.
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