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SUPPLIER SHORT TERM LOAD FORECASTING USING
SUPPORT VECTOR REGRESSION AND EXOGENOUS INPUT

Marin MATIJAŠ ∗— Milan VUKIĆEVIĆ ∗∗— Slavko KRAJCAR ∗

In power systems, task of load forecasting is important for keeping equilibrium between production and consumption.
With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast
their own load. Consumption of end-consumers is stochastic in nature. Due to competition, suppliers are not in a position to

transfer their costs to end-consumers; therefore it is essential to keep forecasting error as low as possible. Numerous papers
are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models
from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated
supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting

error, while adding customer number in different datasets does the opposite.
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1 INTRODUCTION

Load forecasting is a fundamental task in power sys-
tems and electric utilities operation from the development
of first electricity grids. Due to importance of keeping
equilibrium between production and consumption, many
approaches have been developed throughout its history.
A good survey of papers dating as far as 1966 is given in
[1]. Researches devoted to load forecasting have a com-
mon goal of reducing load forecasting error as low as pos-
sible. Decrease of load forecasting error directly decreases
risk of blackout and suppliers operational costs. Bunn and
Farmer showed the importance of good load forecasting
by reporting that increase in load forecasting error of 1 %
resulted in 10 million Pounds increase in operating costs
[2]. Decrease of load forecasting error is also important
for power system control, supply security, power system
planning and liberalized electricity market operation.

In liberalized electricity markets, participants pay the
difference between their forecasted and realized load at
the price of balancing energy. Accordingly, producers and
suppliers’ expenditure is linked to their load forecasting
error through balancing energy cost. Due to competition,
market participants are not able to transfer their load
forecasting costs to end-consumers. This forces them to
improve their forecasting in order to remain profitable.
Different parties in the electricity market need different
types of load forecasts for their business processes. For
that purpose, load forecasting is most frequently divided
in four types from the perspective of time period:
VSTLF very short term load forecast, up to 24 hours in

the future;
STLF short term load forecast, between 24 hours and 86

hours in the future;

MTLF medium term load forecast, between 86 hours and
6 months in the future;

LTLF long term load forecast, 6 months and more in the
future.
Although all types of load forecasting are important

in liberalized electricity market operation, the most im-
portant is Short Term Load Forecasting (STLF). This is
because electricity is most frequently scheduled on a daily
basis and that time period corresponds to short term fore-
casting. Proportion of STLF and its dominance over other
types of load forecasting can be found in surveys on load
forecasting in [3–7].

Depending on the algorithms that dominate in a load
forecasting model, these can be separated in the follow-
ing groups: autoregressive models, moving average, ex-
ponential smoothing models and machine learning based
models.

STLF is different for production and consumption be-
cause it depends on different parameters. In production,
parameters affecting load forecast are chosen depending
on the type of power plant, while in consumption, param-
eters are chosen depending on the type of consumption
and vary accordingly [8]. If we consider market partic-
ipant that plans consumption of the whole grid, it can
make forecasts and plans according to the measurements
made on the highest voltage level of the grid. These are
often real-time measurements on a high voltage grid that
can be obtained and aggregated in less than one hour.
If we consider market participants in a liberalized mar-
ket, they do not plan the whole grid load which has few
important effects for both forecasting of production and
consumption. Considering consumption forecasting, dif-
ference with the introduction of liberalized markets is in
the supplier’s perspective because:
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• Metering of end-consumers, especially households is
not done with same time granularity or accuracy as
metering on upper voltage levels. Substantial number
of customers are metered monthly, quarterly, annually
or biannually depending on the market;

• Meteorological data is hard to link with consumption,
especially in situation in which GIS system or database
which links points of delivery with geographical loca-
tions is not in place;

• Customers can leave suppliers through a supplier
switch;

• New end-customers join suppliers with no historical
consumption or without data available in the forecast-
ing system.

Due to the mentioned reasons, load forecasting error is
generally higher when forecasting load of a supplier. Ex-
ercising of demand side management on a larger scale and
scheduling optimization need more accurate forecasts. In-
troduction of efficient demand side management is a step
towards more efficient electricity grid. Scheduling opti-
mization is needed in order to manage scheduling of cus-
tomers on lower level as a step towards more efficient
electricity markets.

Our approach is assessing supplier load forecasting
in the electricity market. Besides previously mentioned
exogenous data related to STLF, suppliers are exposed
to different market events such as customer migration.
In order to include effects on load like supplier switch,
we use exogenous data related to customer migration,
namely number of points of delivery (PoDs), to reduce
load forecasting error of a supplier.

1.1 Related work

Exogenous input has been opted in or out, through-
out history of load forecasting with different conclusions.
Hor et al [9] used gross domestic product and population
growth as input for regression based monthly forecast for
England and Wales along with various metrological vari-
ables. Comparison of three models implementing social
and economic variables showed that variation of metro-
logical data implementing cooling degree days and heat-
ing degree days performed the best, resulting with mean
average percentage error (MAPE) of 1.98%. Mohamed
and Bodger [10] forecasted LTLF using electricity price,
gross domestic product and population as exogenous out-
put for multiple linear regression. Since dependency of
considered exogenous inputs and electricity load is non-
linear, same dataset can give better results with another
type of regression that considers non-linearity. In their
implementation of VSTLF and STLF for a large electric-
ity distribution company, Souza et al [11] used standard
Holt-Winters model. On top of it, they implemented com-
plex holidays rule based system in order to substantially
minimize forecasting error. Some approaches showed that
holiday or even temperature used as an exogenous in-
put can increase the forecasting error in estimating fu-
ture load. Interesting example is winning entry of EU-
NITE competition by Chang et al [12] which observed

that high uncertainty of temperature for the forecasted
period can lead to increase of error. The same approach
excluded holiday as an input variable as it led to worse
forecasting performance. In recent years approaches us-
ing spot price as an exogenous input for load forecasting
have been proposed. In a broad range of papers differ-
ent approaches and variables such as weather, social and
economic exogenous input have been used, including cus-
tomer related inputs [13]. Karsaz et al [14] implemented
estimation of electricity load and price together via re-
cursive co-evolutionary approach. By recursively estimat-
ing Neural Network (NN) weights for electricity load and
price forecasting, they got 5–20 % improvement over other
approaches in three experiments they did.

Models that use machine learning techniques have
been developed with the introduction of neural networks
in 1990s. In SCOPUS database for 2010 year, 70 out
of 118 papers devoted to STLF were still utilizing NNs
[15] on 29th January, 2011. Since algorithm implementing
Support Vector Machines (SVM) won EUNITE load fore-
casting competition in 2001 [12], more and more models
have been implementing algorithms based on SVM and
their number is 18 published papers in 2010 [15]. A recent
survey on Time Series prediction using Support Vector
Machines [7] showed that most of the algorithms in a sur-
vey were implemented in financial market prediction and
electric utility forecasting. Pai and Hong [16] proposed
Recurrent Support Vector Machine that used Genetic Al-
gorithm for optimization of SVM. Li et al [17] introduced
combination of “similar day method” with Support Vec-
tor Regression (SVR) that gives lower error as “similar
day method” positively influences the estimation of out-
put. Niu et al [18] proposed implementation of chaotic
time series and SVM for STLF that can effectively in-
crease accuracy as it gives general models of non-linearity.

2 METHODOLOGY

Based on implementations of support vector machines
for solution of load forecasting problem, we are selecting
one instance of the algorithm for the problem of supplier
short term load forecasting.

Vapnik introduced linear classifiers and optimal sepa-
rating hyperplanes in 1960s. After introduction of SVM
for classification in 1995, it was recognized as a good so-
lution for different tasks. Importance of the algorithm in-
creased with SVR, a version of SVM for regression. SVR
was proposed in 1996 by Vapnik, Drucker, Burges, Kauf-
man and Smola [19]. It was soon successfully applied to
variety of time series problems one of which was load
forecasting. Its biggest advantage over other solutions,
(eg NNs) is that it is based on structural risk minimiza-
tion principle. Instead of finding empirical errors, SVR
aims to minimize upper bound of the generalization er-
ror, therefore lowering chance of over fitting. Here we give
an overview of SVR algorithm proposed in [20] and used
in this paper.
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For a given set of examples (xi, yi) and a capacity
constant C , the following optimization problem has to
be solved:

Minimize

ϕ(ω, ξ, ξ∗) =
1
2
(ω⊤ω) + C

(∑l

i=1
ξ +

∑l

i=1
ξ∗

)
(1)

with respect to

(ω⊤xi

)
≥ yi − ε − ξ∗i , i = 1, . . . , n , (2)

(ω⊤xi

)
≤ yi + ε + ξ∗i , i = 1, . . . , n , (3)

ξ∗i ≥ 0 , i = 1, 2, . . . , n , (4)

ξi ≥ 0 , i = 1, 2, . . . , n . (5)

Because of computational complexity, instead of mini-
mization, a dual formulation of the problem can be solved:

Maximize

W (α, α∗) = −1
2

l∑
i,j=1

(α∗
i − αi)(α∗

j − αj)⟨xixj⟩+

l∑
i=1

yi(α∗
i − αi) −

l∑
i=1

ε(α∗
i + αi) (6)

with respect to

0 ≤ αi, α
∗
i ≤ C , (7)

l∑
i=1

α∗
i =

l∑
i=1

αi . (8)

Lagrange multipliers αi and α∗
i act as forces pushing

the predictions towards target value. Instead of being
solved directly, dual problem is iteratively decomposed
into a small working set S and minimized on the work-
ing set only, keeping the other variables fixed. A working
set is computed on the basis of feasible directions. For
each feasible direction i if either αi or α∗

i is non-zero,
other Lagrange multiplier is zero and variable complies
with Karush-Kuhn-Tucker’s conditions. Non-zero coeffi-
cient will be equal to or larger than ε . Because errors
below ε are tolerated, training data inside the so-called
“ε -tube”, do not contribute to the problem solution. First
m training data outside of “ε -tube” are support vectors.
Generally, the larger the ε value, the fewer the num-
ber of support vectors, and thus the sparser the repre-
sentation of the solution. Besides these, important fea-
ture of SVR is called “kernel trick”. For nonlinear cases,
the dot product ⟨xi, xj⟩ in (6) becomes a kernel func-
tion ⟨ϕ(xi), ϕ(xj)⟩ = K(xi, xj). The idea is introduced
by function ϕ : Rd → F , which maps the input space
to the high dimensional feature space. If any function
can satisfy Mercer’s condition, it can be used as a kernel
function.

Which kernel is most suitable depends on the inner
product in the data that the kernel will be used with.
The most used kernels are: linear, radial basis function
(RBF), polynomial and Fourier kernels.

3 EXPERIMENT

Experiment consists of support vector regression based
short term load forecasting on one control and two differ-
ent datasets in which input data has been varied in order
to get the combination that leads to lowest forecasting
error.

3.1 Dataset preparation

The experiment is conducted on three datasets repre-
senting three different types of suppliers. Dataset A rep-
resents a consumption of wider grid area with a mix of
industrial and household end-consumers. Dataset A is a
control group as it does not include data regarding cus-
tomers and PoDs of a particular supplier, but has aggre-
gated consumption of one transmission system. Data of a
real electricity system for the period between January 1,
2009 and December 31, 2009 is analyzed.

Dataset B is created by simulating supplier behaviour.
Actual consumption of customers from a large database
is pre-processed with linear transformation

E = α ∗ e + a (9)

where α is a real number from an interval [0.7, 1.3],
e is the original consumption and a number between
−0.1

n

∑n
k=1 ek and 0.1

n

∑n
k=1 ek , where ek is energy in the

k -th interval for a given customer and n is the total num-
ber of time intervals. Constrained linear transformation
has been used in order to preserve similar load patterns at
similar consumption levels. This pre-processing is made
before normalization and other changes in order to ensure
that no private data is used in the analysis.

Switching suppliers is simulated randomly on dataset
created in described fashion with a condition that, at
each moment, at least 80 % of PoDs supplied by the
supplier have to be the same throughout the whole year.
This condition is added as in this stage of electricity
markets development, only a small fraction of customers
change their suppliers. Another condition for switching
suppliers is that a switched PoD cannot switch back. This
is in order to include cases in which supplier switch has
been started by a supplier and customer cannot start a
new contract with a supplier. This is in accordance to
present market practice in retail electricity markets where
long periods of supplier switch or penalties imposed by
suppliers force end- customers to switch once a year or
less. Average load of Dataset A is three times bigger than
average load of Dataset B. Dataset B is a simulation
of a medium to large sized supplier of commercial and
industrial end-consumers. They used the same period as
for Dataset A. Dataset C is created as a simulation of
supplier behaviour in a same manner as Dataset B. It
simulates behaviour of a small supplier for commercial
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Fig. 1. Absolute relation between average hourly load for Datasets

A, B and C

Fig. 2. Five layers of forecasting model from the top layer in which
data is fed, to the last layer where core algorithm is calculating the

predictions

Fig. 3. Average difference between real and forecasted values with-
out holidays for year 2010

and industrial customers. Period tested is the same as for
other two datasets, and average load of Dataset A is 31
times bigger than average load of Dataset C. Volatility
in Dataset C is higher than in other two datasets due to
a small number of customers, and additionally because
supplier switch is taken into account. In Fig. 1 we can
see the difference of average daily load between the three
datasets.

Load of all three datasets is of hourly granularity.
Along with label that is presented by hourly consump-
tions, datasets are extended with empirically found set

of features presented by 36 dummy variables 4 of which
correspond to a season, 7 correspond to days in a week,
24 correspond to hours in a day and one additional fea-
ture marks holidays. Exogenous data are represented by
number of customers, number of PoDs and square root of
their product.

MAPE is used as a measure of forecasting error be-
cause it is its most widely used measure [6, 7]. MAPE
can be calculated as

MAPE =
1
n

n∑
i=1

∣∣∣fi − ai

ai

∣∣∣ . (10)

Where ai stands for actual consumption in the given
period and fi stands for forecasted value.

3.2 Experiment steps

In the pre-processing, first all non-dummy variables
in datasets are normalized on interval [0, 1] in order to
minimize higher weight of some features on selection of
support vectors.

Forecasting is done as a simulation of forecasting in a
real-world. Because forecasting is done for a day in ad-
vance, learning set has been created up to the data of two
days before the forecasted day. This is called D-1 forecast-
ing. That means, if we on Tuesday forecast consumption
of Wednesday, the last used day for learning is Monday
(two days prior). This delay can be longer depending on
time periods in which meters are read. Load forecasting
error increases with the increase of meter reading peri-
ods. Therefore, our forecasting error is higher than in the
case when forecasting is done with the most recent meter
readings available for the forecasted period.

Layer diagram of the forecasting model with five lay-
ers can be seen in Fig. 2. The first layer consists of al-
gorithm for SVR. In order to select optimum parameters
performance is measured and logged along with SVR. We
log SVR parameters, performance and loop time for later
analysis.

In order to decrease bias, learning has been done with
10-fold stratified cross validation for each selection of pa-
rameters (second layer). For each learning set, an algo-
rithm has been optimized through Grid Parameter Op-
timization as described in [21] (third layer). After opti-
mum parameters have been found, SVR model is applied
to a testing set and load forecast has been made. After-
wards, learning test is extended for 24 hours, testing set
is moved forward for 24 hours and whole process is re-
peated (fourth layer). Fifth layer consists of data input
which, besides load features, take exogenous input for es-
timation of future load.

4 DISCUSSION

Experiments have been conducted using open source
program RapidMiner 5.0 on a personal computer with a
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Table 1. MAPE of experiments with different combination of ex-
ogenous input. Best results is shown in bold letters

Type/Size Dataset B (%) Dataset C (%)
None 9.12 8.07
Cust 10.97 10.16
PoD 6.19 7.06

Custpod 12.11 7.07
Sqrt (cust, pod) 19.63 16.04

2.83 GHz Core(TM) 2 Duo E8300 CPU with 2 GB mem-
ory under Microsoft Windows XP Professional with Ser-
vice Pack 3 with an average runtime of 21:37 minutes per
forecasted day. Runtime highly depends on how far the
day in the forecasted timeline is from the moment of re-
gression (eg it takes more historical data for forecasting
farther days). Taking more historical data increases the
number of support vectors thus affecting performance. In-
crease of cost parameter C also increases runtime, as it
increases the margin which, in turn, returns more sup-
port vectors. More support vectors result in higher di-
mensional spaces used for calculation.

Experiments were conducted on the three datasets
both with 7 combinations of exogenous input and with-
out them. Comparison of average realized and forecasted
values for a typical dataset can be seen in Fig. 3.

We have obtained similar result regarding holidays as
in [12]. Using holiday as a parameter increased forecasting
error from 5.47% to 6.23% for Dataset A. Our findings
suggest that most easily obtainable exogenous input, the
number of customers, is not suitable. It increases forecast-
ing error either used solely or in combination with other
exogenous inputs as can be seen in Table 1.

Type of exogenous input in Table 1 is as follows:
None – no exogenous input;
Cust – number of customers;
PoD – number of PoDs;
Custpod – both number of customers and number of

PoDs;
Sqrt (cust, pod) – square root of product between number

of customers and number of PoDs.
Number of customers performed worse on the dataset B.

We expect this to be due to discrete change of number of
customers in the case of dataset B. Dataset C which had
more frequent changes of customers with non-discrete in-
tervals returned better performance results using number
of customers as a parameter. Best performance was ob-
tained in spring time and worst performance on holidays,
eg for Dataset B with PoD, day with lowest MAPE is 28th

April, 2009 with 0.91% and day with highest MAPE is
25th December, 2009 with MAPE of 39.03%. More com-
plex combinations of exogenous input did not increase
performance compared to using only PoD.

5 CONCLUSION

In this paper, we research forecasting models from the
perspective of a supplier. We simulate supplier load in

two different scenarios and show how different exogenous
input affect supplier load forecasting using support vector
regression.

We show that number of PoDs increase performance,
compared to forecasting without it as a parameter. There-
fore we propose it as a suitable input parameter for SVR
forecasting of supplier load. Furthermore, it is identified
that the number of customers has negative impact on
forecasting performance in different combinations of ex-
ogenous inputs.

Since forecasting models highly depend on geographi-
cal location, market role and forecasting horizon, our fu-
ture work will be focused on different load forecasting
techniques using these inputs as parameters for achieving
more accurate load forecasting models.
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