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GENERATION OF KNOT NET FOR
CALCULATION OF QUADRATIC TRIANGULAR

B–SPLINE SURFACE OF HUMAN HEAD

Ján MIHALÍK ∗

This paper deals with calculation of the quadratic triangular B-spline surface of the human head for the purpose of its
modeling in the standard videocodec MPEG-4 SNHC. In connection with this we propose an algorithm of generation of the

knot net and present the results of its application for triangulation of the 3D polygonal model Candide. Then for the model
and generated knot net as well as an established distribution of control points we show the results of the calculated quadratic
triangular B-spline surface of the human head including its textured version for the texture of the selected avatar.
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1 INTRODUCTION

SNHC (Synthetic Natural Hybrid Coding) [1] is a sub-
group of MPEG-4 [2] specialized in coding of graphical
models of real or virtual three dimensional (3D) objects.
Standardization of the coding extends the range of initial
applications of MPEG-4 because it enables a combination
of real and synthetic objects in the virtual environment.
A very important 3D object in real and in virtual envi-
ronment is the human head. SNHC introduces new algo-
rithms of coding of the human head based on modeling
its surface [3], animation [4] and texturing [5].

Analysis and synthesis of the human head in the
videocodec MPEG-4 SNHC uses its polygonal (wire-
frame) 3D models from the computer graphics. The mod-
els are, however, a course approximation of the human
head surface, but by using suitable techniques of model-
ing [6] they one can be done more precisely with a very
good smoothness. Recently, the area of graphical model-
ing is always a subject of research interest, especially from
the point of view of new construction methods of 3D ob-
jects. First, in the paper, we describe and present a pro-
cedure of calculation the quadratic triangular B-spline,
which next is expanded on calculation of the surface el-
ement for one triangle up to calculation of the whole 3D
surface for fully triangulation. Consequently we propose
an algorithm for generation of the knot net inside and
on the boundary of the triangulation for purpose of cal-
culation the whole quadratic triangular B-spline surface.
Finally, we apply it to calculate the surface of the human
head and present the results of the calculation as well as
its textured avatar.

2 QUADRATIC TRIANGULAR B–SPLINE

While the constant triangular B-spline (TBS) is of
zero order (n = 0) and the linear TBS of the first order
(n = 1), the quadratic TBS is of the second order, when
n = 2. It is calculated by three linear TBS according to
the recurrent equation [7]. Let V = {t00, t01, t02, t10, t20}
be a group of points which determine a support of the
quadratic TBS, as it is shown in Fig. 2a, where t00 =
(h00, v00), t10 = (h10, v10), t20 = (h20, v20) are vertices
of the basic triangular and t01 , t02 are knots of the
vertex t00 . Then a recurrent equation for calculation of
the quadratic TBS M(u|V ) is as follows

M(u|V ) =
∑

i = 02λij

(
u|W

)
M

(
u|V \ {tij}

)
(1)

where the sets V \ {tij} , j ∈ (0, 1, 2) are affinity inde-
pendent quaternions of points selected from the set V by
the manner of missing tij , which determine the supports
of corresponding linear TBS. After break down of eq. (1)
for j = 0 we get

M
(
u|t00, t01, t02, t10, t20

)
= λ00(u)M

(
u|t01, t02, t10, t20

)
+ λ10(u)M

(
u|t00, t01, t02, t20

)
+ λ20(u)M

(
u|t00, t01, t02, t10

)
. (2)

From the previous equation it follows that the missed
points have to create an affinity independent trinity W =
{t00, t10, t20} to which belongs the corresponding triplet
of barycentric coordinates λ00(u), λ10(u), λ20(u). They
are calculated as

λ00(u) =
d(u, t10, t20)
d(t00, t10, t20)

, λ10(u) =
d(t00,u, t20)
d(t00, t10, t20)

,

λ20(u) =
d(t00, t10,u)
d(t00, t10, t20)

(3)
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Fig. 1. Tree structure of the entire calculation the quadratic TBS M(u|t00, t01, t02, t10, t20)

Fig. 2. a) Support, b) graph of quadratic TBS M(u|t00, t01, t02, t10, t20)

where the determinants in denominators with the defined
triplet of points are calculated as

|det(V )| = d(t00, t10, t20) = det

 1 1 1
h00 h10 h20

v00 v10 v20

 . (4)

In analogy, next determinants in nominators with differ-
ent triples of points are calculated. For each point u such
values exist of the barycentric coordinates that it is valid

u =
2∑

i=0

λi0(u)ti0 (5)

where
∑2

i=0 λi0(u) = 1. From the equation above it fol-
lows that they enable to localize the point u in plane
(h, v) only in regard to vertices t00, t10, t20 of the ba-
sic triangular, independently on its cartesian coordinate
system.

At the same time the single linear TBS are calculated
by a similar recurrent procedure, using three constant
TBS with defined supports V (Fig. 1) and values

M
(
u|V

)
=

{
1

| det(V )| if u ∈ [V ) ,

0if u /∈; V ) .
(6)

Graphical presentation of the entire calculation of the
quadratic TBS M(u|t00, t01, t02, t10, t20) by using the
tree structure is in Fig. 1.

Then for the defined basic triangle, given by vertices
t00, t10, t20 , the face of resultant quadratic TBS will be
dependent only on the position of knots as it is seen t01

and t02 from Fig. 2b.

Particular condition, necessary for correct calculation
of the quadratic TBS, is the set of points of the linear
TBS not to be collinear (do not lie on one line). If the
condition is not met a contribution of the given linear
TBS in the resultant quadratic TBS will be zero. Then
negative values of the quadratic TBS occur in a part of
its support. Assuming non-collinearity for them, the po-
sition of knots t01 and t02 is not limited, which means
that they can be allocated anywhere in regard to the ba-
sic triangle (inside, outside, at vertices, on edges). We
have two knots for each vertex of the basic triangle, i.e.,
t01 and t02 for vertex t00 , next t11 a t12 for vertex t10

and finally t21 and t22 for vertex t20 . Afterward more
quadratic TBS can be obtained for the same basic trian-
gle. They will be calculated for supports, created always
by the vertices of basic triangle and two different knots,
ie, V = {t00, t01, t02, t10, t20} , {t00, t10, t11, t12, t20} ,
{t00, t10, t20, t21, t22} , etc. Each set of the supports con-
tains 5 points, from which 3 are the vertices of basic tri-
angle. The procedure of calculation the quadratic TBS
corresponding to separate supports is the same as for the
one V = {t00, t01, t02, t10, t20} .
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Fig. 3. a) Support, b) graph of the quadratic triangular B-spline
surface over triangulation with two triangles

Table 1. Sets of points V I
β and W I

β with |β| = β0 + β1 + β2 = 2

V I
β W I

β β0 β1 β2

V I
110 ={t00, t01, t10, t11, t20}W I

110 ={t01, t11, t20} 1 1 0
V I

101 ={t00, t01, t10, t20, t21}W I
110 ={t01, t10, t21} 1 0 1

V I
011 ={t00, t10, t11, t20, t21}W I

011 ={t00, t11, t21} 0 1 1
V I

200 ={t00, t01, t02, t10, t20}W I
200 ={t02, t10, t20} 2 0 0

V I
020 ={t00, t10, t11, t12, t20}W I

020 ={t00, t12, t20} 0 2 0
V I

002 ={t00, t10, t20, t21, t22}W I
002 ={t00, t10, t22} 0 0 2

3 CALCULATION OF QUADRATIC
TRIANGULAR B–SPLINE SURFACE

The quadratic triangular B-spline surface [8] is com-
posed of the surface patches of separate triangles of the
triangulation τ , which are calculated using TBS of the
degree 2. Then points of the quadratic triangular B-spline
patch for a triangle I = {t00, t10, t20} are calculated as
follows

F(u) =
∣∣det(W I

110)
∣∣M(

u|V I
110

)
cI
110

+
∣∣det(W I

101)
∣∣M(

u|V I
101

)
cI
101+

∣∣det(W I
011)

∣∣M(
u|V I

011

)
cI
011

+
∣∣det(W I

200)
∣∣M(

u|V I
200

)
cI
200+

∣∣det(W I
020)

∣∣M(
u|V I

030

)
cI
020

+
∣∣det(W I

002)
∣∣M(

u|V I
002

)
cI
002 (7)

where sets of points V I
β determining the supports of sep-

arate quadratic TBS in eq. (7) and to them correspond-
ing sets of points W I

β for calculation of the normalization
constants by their determinants with β = β0+β1+β2 = 2
are in Tab. 1.

The number of the control points cI
β will be (n+1)(n+2)

2

= (2+1)(2+2)
2 = 6 out of which 3 after their orthographic

projection to the plane (h, v) are placed near the ver-
tices of triangle I and the remaining 3 after the same
projection near the centers of their sides.

The whole quadratic surface over the full triangulation
τ is composed of the surface patches of separate triangles
and can be calculated as [9]

P(u) =
∑
I∈τ

∑
|β|=n

∣∣det
(
W I

β

)∣∣M(
u|V I

β cI
β . (8)

In general, modeling of the quadratic triangle B-spline
surface can be carried out by changing the position of
control points cI

β as well as distribution of knots. Allo-
cation of knots for separate vertices of the triangulation
τ will affect its smoothness. Note, that nonzero contri-
butions of the particular surface patches are not only in
areas of corresponding triangles, but also in surrounding
outside of them determined by supports of their quadratic
triangular B-splines M

(
u|V I

β

)
in eq. (8). This is a ba-

sic difference from the classical methods of construction
of surfaces, for example by using Bézier’s surface patches
[10]. Just interference of the quadratic triangular B-spline
surface patches ensures a global smoothness of the whole
surface without additional limitations of positions of con-
trol points.

For the assumed triangulation τ in Fig. 3a, composed
of two triangles with one adjoining side or two common
vertices, the number of knots is 8 and control points 9.
To the vertices belong not only to the same knots but
the control points, too. In addition, the next two control
points belong to the center of the adjoining side. Possible
forms of the modeled quadratic triangular B-spline sur-
face, for the triangulation in Fig. 3a, along with control
nets are shown in Fig. 3b.

4 GENERATION OF KNOT NET

The designed algorithm of generation of the knot net
follows from the univariant Monte Carlo method [11].
This method has one level of variance, namely the dis-
tances of the knots from a vertex to which the knots are
assigned. This algorithm is useful for symmetric objects
like the human head where in an ideal case left and right
half are equal.

4.1 Generation of knots for vertices inside the
triangulation

In this case, the vertex ti0 for which two knots will
be generated do not lie on the boundary of triangulation.
Then we have to find all triangles that have the vertex ti0

in common as can be seen in Fig. 4a. Consequently, we
will determine two lines p1 and p2 crossing through the
vertex ti0 and are axes of the biggest angle α1 and the
second biggest one α2 of these triangles (Fig. 4b). Next,
the distance D1 is defined as approximately one third
of the length of shorter side d1 of the triangle with the
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Fig. 4. Generation of two knots for the vertex ti0 inside the triangulation
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Fig. 5. Generation of two knots for the vertex ti0 of one triangle
on the boundary of triangulation
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Fig. 6. Possible angles between marginal sides of triangles
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Fig. 8. a) Allocation of the knots ti1 and ti2 for β > 180◦ , b) their

symbolic representation

biggest angle and with the vertex ti0 and the distances
D2 – as approximately one third of the length of shorter
side d2 of the triangle with the second biggest angle and
with the same vertex ti0 (Fig. 4c). Then we allocate the
knot ti1 on the line p1 in distance D1 and similarly ti2

on the line p2 in distance D2 from the vertex ti0 in
direction inside of the corresponding triangle (Fig. 4d).

Finally, we will check whether all conditions for allo-
cation of the knots are fulfilled [3]. If not so we systemat-
ically reduce the distances in case that the knots interfere
with triangles, which do not have the vertex ti0 . Also we
change a slope of the line p1 or p2 , when the knots lie
collinearly with some vertex or one of them lies on a line
determined by a side of one of the triangles.

4.2 Generation of knots for vertices on the
boundary of triangulation

In case that we have just one triangle with the vertex
ti0 on the boundary of triangulation, we will follow such
a way. Two lines p1 and p2 are determined crossing
through the vertex ti0 and dividing inner angle α of
the triangle at the vertex ti0 into α1 = (1/3)α and
α2 = (2/3)α (Fig. 5a). Then the distances D1 and D2

are defined as approximately one third of the length of
corresponding sides d1 and d2 of the triangle with the
vertex ti0 closer to the line p1 and p2 , respectively as
can be seen in the same Fig. 5a. Afterwards, we will
allocate the knots ti1 and ti2 on the lines p1 and p2

in distances D1 and D2 from the vertex ti0 , respectively
in direction out of the corresponding triangle or out of
the triangulation (Fig. 5b).

If there are more triangles with the vertex ti0 on
the boundary of triangulation, so at first we will define
outer angle β that is contained by marginal sides of the
triangles where ti0 is one of their vertices (Fig. 6).

When outer angle β < 180◦ , then we will determine
two lines p1 and p2 crossing through the vertex ti0 and
dividing outer angle β into β1 = (1/3)β and β2 = (2/3)β
(Fig. 7a). Consequently, the distances D1 and D2 are
defined as approximately one third of the length of sides
d1 and d2 of the triangles with the vertex ti0 closer to the
line p1 and p2 , respectively as can be seen in the same
Fig. 7a. Similarly we proceed if outer angle β > 180◦ .
Then we will determine two lines p1 and p2 crossing
through the vertex ti0 which are axes of the biggest angle
α1 and the second biggest one α2 , respectively from all
triangles with this vertex (Fig. 7b). Also for these lines
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Fig. 9. a) Orthographic projection of the model Candide. b) Gen-
erated knot net for the triangulation τ of the model

I0(A)

Fig. 10. The quadratic triangular B-spline surface of human head

I0(A)

Fig. 11. The modeled human head of a selected avatar by the
quadratic triangular B-spline surface

we will define the distance D1 as approximately one third
of the length of shorter side d1 of the triangle with the
biggest angle α1 and the distance D2 – of the length of
shorter side d2 of the triangle with the second biggest
angle α2 and with the common vertex ti0 (Fig. 7b).

Afterwards, we will allocate the knots ti1 and ti2 on
the lines p1 or p2 in distance D1 and D2 , respectively
from the vertex ti0 in direction out of the correspond-
ing triangle. These are shown for β > 180◦ in Fig. 8a
together with their symbolic representation in Fig. 8b,
where ti0 is connected with the knot ti1 and that one
is connected with ti2 . This symbolic representation just
simplifies their imaging in the full triangulation. Simi-
larly, the knots for β < 180◦ would be allocated including
their symbolic representation, which can be generalized
also for vertices inside the triangulation. Finally, we will
check whether all conditions for allocation of the knots
on the boundary are fulfilled, similarly as it was inside
the triangulation, including their possible correction.

5 EXPERIMENTAL RESULTS

The proposed algorithm for generation of knot net was
applied on calculation of the quadratic triangular B-spline
surface of the human head [3]. It is based on its 3D polyg-
onal model which is determined by a list of vertices and
polygons. Vertices are defined by their coordinates in R3
and polygons-by the ones that create them. Typical poly-
gons are triangles or quadrangles. The main advantage of
triangles is, that their vertices always lie in the same plane
what leads to simple manipulation with them such as in
graphical means of OpenGL. A density of polygons in 3D
model of the human head depends on a number of de-
tails of its separate parts like eyes, mouth, nose, etc. For
our purposes we used free available 3D polygonal model
Candide 3-1-6 [12], which contains 113 vertices and 184
polygons (triangles) and represents a course approxima-
tion of the surface of human head.

The triangulation τ , over which the quadratic triangu-
lar B-spline surface of the human head will be calculated
is given by the orthographic projection of the model Can-
dide from R3 to the plane of coordinates (h, v), ie by its
front view in Fig. 9a. Then two knots are allocated to each
of its vertices such a way to be valid the condition of nor-
mality over the full triangulation τ . However, for them
some non accepted positions have to be excluded [3]. In
preprocessing of the input triangulation τ there are es-
tablished the limitations for positions of knots and then
their assigning to separate vertices is carried out by the
proposed algorithm. The result of generation the knot
net for the triangulation τ by the algorithm is illustrated
in Fig. 9b. The knots have an influence on the calcu-
lated quadratic triangular B-spline surface of the human
head in area of intersection of supports of the separate
quadratic TBS with vertices to which the ones are as-
signed. The biggest influence of the knots on the surface
is near of their surroundings.

Provided that the allocation of knots is correct, when
the condition of normality is valid over the full triangula-
tion τ next modeling of the surface of human head is pos-
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sible by control points cI
β in space R3 with coordinates

(h, v, r) [3]. The surface of human head can be calculated
continually in each point inside the input triangulation or
over its finer structure that we used on calculation of the
resultant surface in Fig. 10. After its texturing by texture
of a selected avatar the modeled human head is in Fig. 11.

6 CONCLUSION

The quadratic triangle B-spline surface of the human
head is smooth also for a wireframe (edginess) 3D model.
The surface is created by surface patches calculated using
the quadratic triangular B-splines for separate triangles
of the orthographical projection of the 3D model. The
shape of thesurface is given by the distribution of control
points and its smoothness is affected by knot net. Re-
lationship between the surface and knot net is invariant
toward transformations like scaling, rotation and transla-
tion. The proposed algorithm of generation the knot net
is universal and can be applied to calculate the quadratic
triangle B-spline surface of any 3D object.

MPEG-4 SNHC specifies for 3D polygonal models of
the human head their neutral (initial) state as well as
feature points. These are arranged in groups referring to
certain parts of the human head as mouth, nose, eyes, etc.
By using the feature points from the real human head it is
possible to form a selected universal polygonal 3D model
in such a way that its feature points are in coincidence
with those from the real human head. Coordinates of the
feature points of the real human head represent facial
definition parameters (FDP) and in the simplest case they
can be directly obtained from the output of 3D scanner..
Then on the basis of knowledge FDP, using the proposed
algorithm for generation of knot net, it is possible to
create the quadratic triangular B-spline surface with the
shape of a real human head which is very important part
of its cloning [13].

Recently, information and communication technologies
are extended from the real environment to virtual one
[14]. In these environments, an important object is human
who can be represented in their interiors as avatar (vir-
tual) or clone. In general, inside of the interiors may occur
avatars and clones together. The dialog between them is
carried out by using their cloned or virtual heads. Then
virtual videocommunication enables far-distant partici-
pants to see the dialog inside the same virtual environ-
ment in which they are indirectly presented.
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[2] MIHALÍK, J. : Standard Videocodec MPEG-4, Electronic Hori-

zon 60 No. 2 (2003), 7–11. (In Slovak)
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