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A SLIDING MODE CONTROL FOR
FOUR–WIRE SHUNT ACTIVE FILTER
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The present paper deals with the sliding mode control of a three-phase four-wire shunt active filter SAF, to improve
phase-current waveform, neutral current mitigation and reactive power compensation in electric power distribution system.
The sliding mode is formulated using elementary differential geometry, then the control vector is deduced from the sliding
surface accessibility using the Lyapunov stability. The algorithm used to establish the current references for the sliding mode
controller is based on the instantaneous real and imaginary power theory for four-wire system. It will be seen that this
method permits to synthesis the control vector with simple manner, and finally, the obtained simulation results confirm that
the above objectives are satisfied.
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1 INTRODUCTION

The increased severity of harmonic pollution in power
distribution network has attracted the attention to de-
velop dynamic and adjustable solutions to the power
quality problems giving rise to active filter [1–5]. Three-
wire active filtering provides compensation of harmon-
ics, reactive power, but can’t compensates zero sequence
components caused by single-phase non-linear loads in-
herently generate more harmonics than three-phase non-
linear loads, for this reason, four-wire active filtering is
recommended in distribution system [3–5].

After synthesizing the reference currents, the voltage
source inverter must inject these components in the point
of common coupling with minimum error and fast re-
sponse, this objective requires an appropriate current
control method, in this regard, two different approaches
are generally adapted; the fixed frequency control and the
variable structure control (VSC). The first one requires
a linear approach of the system to synthesize the control
law. This approach can be advantageous for the fixed fre-
quency but it is not very adapted to multi-frequencies
signals. In fact the proportional integral controller per-
formed traditionally for this approach are known for there
handicap to regulate correctly alternating references.

The sliding mode control (SMC) which is derived from
the theory of variable structure control introduced since
long time [6], is a known discontinuous control technique
which takes in account the time varying topology of the
controlled system. Thus this technique is naturally suit-
able to control systems based on power electronics devices
in general [7–9], and active filter as particular case of these
systems [10, 11]. It is characterized by simplicity imple-
mentation, high robustness in presence of uncertainly in
system parameters, and fast response. For these reasons,
the sliding mode control can be successfully applied to
achieve harmonics references regulation.

The purpose of this paper is the application of the slid-
ing mode control to a three-phase four-wire shunt active
filter based on three-leg voltage source inverter (VSI).

The layout of this paper is as follows: The system de-
scription and the establishment of the differential equa-
tions of the system will make the object of the first part
of this paper. After that, we will explain briefly the al-
gorithm of the reference current computation based on
the known pq–theory. The sliding mode control to active
filter current control is then described in detail, and fi-
nally simulation results considering load variation will be
given to measure the performances and the validity of the
proposed control.

2 SYSTEM DESCRIPTION AND MODELING

Figure 1 illustrates the configuration of the four-wire
shunt active filter under study in this paper. The power
circuit is based on three-phase three-leg voltage source
inverter, connected to the network through a first order
passive filter (LC , rC). At the DC side the bus is consti-
tuted of two capacitors C1 = C2 = C with a midpoint
connected to the neutral wire of the network. The ob-
jective of this SAF topology is to inject a current vector
icabcN in the mains in order to compensate for harmon-
ics, reactive and neutral components of the load currents,
keeping the DC-link voltages VC1 and VC2 balanced and
in an admissible range. To establish the dynamic equa-
tions of the system, let suppose that the power switches
Sk can be assumed ideals, then the output voltage for
each phase k to neutral can be expressed as follows

vck = dkVC1 − dkVC2 . (1)

Where the switch position functions dk define the states
of the power switches Sk and S′

k as follows

dk =

{

1 if Sk on, S′
k off,

0 if Sk off, S′
k on.
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Fig. 1. The configuration of the four-wire shunt active filter under study

Fig. 2. Equivalent circuit of the configuration from Fig.1

VC1 and VC2 are the voltage at the two capacitors of the
DC-bus, related to dk and the active filter currents ick

as follows

C
dVC1

dt
=

∑

k=a,b,c

dkick , (2)

C
dVC2

dt
=

∑

k=a,b,c

−dkick . (3)

Note that dk = dk − 1.

The interaction between the voltage source inverter is
scribed by the following differential equation

Lc

dick

dt
= −rcick + vck − ek . (4)

Where ek represent the mains voltages at the point of
common coupling.

Replacing the function dk with a new function uk

defined as follows

uk = 2dk − 1 . (5)

Thus

uk =

{

1 when dk = 1 ,

−1 when dk = 0 .

With this new function, the power circuit in Fig. 1 can
be replaced by an equivalent circuit as shown in Fig. 2,
and then the equation (1) is rewritten as follows

uck =
1

2
uck(VC1 + VC2) +

1

2
(VC1 − VC2) . (6)

Putting VC1 + VC2 = Vdc , and VC1 − VC2 = ∆Vdc which
represent respectively the DC-bus voltage and the unbal-
ance between the two capacitors. Replacing, (2), (3) and
(4) can be rewritten respectively as follows

dVC1

dt
=

1

2C

(

∑

k=a,b,c

ukick +
∑

k=a,b,c

ik

)

, (7)

dVC2

dt
=

1

2C

(

∑

k=a,b,c

ukick −
∑

k=a,b,c

ik

)

, (8)

Lc

dick

dt
= −rcick +

1

2
ukVdc +

1

2
(VC1 − VC2) − ek . (9)

Finally, these equations are rearranged under matrix from

d

dt
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Fig. 3. Algorithm, used to optimize the power flow

3 REFERENCE CURRENT IDENTIFICATION

The reference current identification is needed to syn-
thesize the component to be compensated from the mea-
suring the load current and the voltage at the PCC. In
this paper, the pq -theory method is adopted to achieve
this operation. This technique proposed in [12] is ex-
pended and well explained in [3] for four-wire system ap-
plications. The principle of the pq -theory is to extract
the compensated current components from the undesir-
able components in the instantaneous real, imaginary and
zero-sequence powers. Consequently, if the mains volt-
ages eabc are disturbed, the instantaneous power will not
reflect correctly the load current status, for this reason
a Fundamental Positive Sequence Identification (FPSI)
is generally included. Thus, if we denote e′α, e′β , the in-

stantaneous mains voltage corresponding to the correctly
extracted fundamental positive sequence of eabc in αβ -
frames, then the instantaneous powers given in (11) will
contain all spectrum information on load current.

[

p

q

]

=

[

p + p̃

q + q̃

]

=

[

e′α e′β
−e′β e′α

]

. (11)

Note that the new input voltage e′abc do not contain
any zero-sequence voltage component (eγ = 0), as a
consequence, zero-sequence power pγ is also zero.

In ideal conditions, the optimal power flow is provided
to the source when this one supplies only the average
real power p , this means that the active filter must com-
pensate all other power components, and naturally the
additional power components ploss and ∆p0 needed re-
spectively to DC-bus voltage regulation and balancing,
thus, the reference compensating powers are

p∗c = −p̃ + ploss + ∆p0 , q∗c = −q . (12)

These signals are then used to calculate the following
reference current in αβ -frames

[

i∗cα

i∗cβ

]

=
1

e‘2α + e‘2β

[

e′α −e′β
e′β e′α

] [

p∗c
q∗c

]

. (13)

Since the zero-sequence current must be compensated,
the reference component in the γ -axis is iγ itself with
negative sign evidently. Finally, the reference currents in
abc-frames are obtained as follows
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i∗Lγ
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 . (14)

This algorithm is represented schematically in Fig. 3.

4 SLIDING MODE CONTROL

The sliding mode control consists to select the suitable
switching configuration of the VSI in order to guarantee
the state trajectory attraction toward a predefined sliding
surface, and to maintain it stable over this surface.

The system established in (8) is a MIMO nonlinear
system. In order to formulate the sliding mode creation
problem, letting

x = [ x1 x2 x3 x4 x5 ]
⊤

= [ ica icb icc Vc1 VC2 ]
⊤

.

Then the state equation can be rearranged in the form

ẋ = f (x) + G(x)u . (15)

Where the n dimensional vector field f (x), the n × m

dimensional input matrix G(x) and the m dimensional
control vector u are given as follows

f (x) =
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Lc
x1 + 1

2Lc
x4 −

1
2Lc
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ea

Lc
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G(x) =
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, u =





ua

ub
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 .

4.1 Sliding surfaces

For the n dimensional controlled system regulated by
m independent switches, m sliding surface coordinate
functions are defined. The m sliding surfaces are rep-
resented by the smooth algebraic restrictions σi(x) = 0,
i = 1, 2, . . . , m . For each surface Si , we have

Si = {x ∈ Rn | σi(x) = 0} . (16)

And the intersection of the m surfaces is denoted by S

which verify

S = {x ∈ Rn | x ∈ Si , i = 1, 2, . . . , m} . (17)

Let define the vector of the sliding surface coordinate
functions as follows

σ(x) =





σ1(x)
σ2(x)
σ3(x)



 =





x1 − x∗
1

x2 − x∗
2

x3 − x∗
3



 . (18)

We know yet that when the sliding mode is reached, in
other words, when the state vector is forced to evolve
on the intersection of the sliding surface, ie x ∈ S , the
sliding surface coordinate function σ(x) must satisfy the
following condition

(

σ̇(x), σ(x)
)

=
(

0,0
)

. (19)

Then, we can write

σ̇(x) =
∂σ(x)

∂x⊤
(

f (x) + G(x)ueq(x)
)

= 0 . (20)

We denote ∂σ(x)
∂x⊤ f (x) by Lfσ(x), an dimensional vector

which represents the directional derivative of σ(x) along
the direction of the vector field f (x). Similarly, the m×m

dimensional matrix ∂σ(x)
∂x⊤ is denoted by LG(σ(x). Thus,

(20) is rewritten as follows

σ̇(x) = Lfσ(x) + LGσ(x)ueq(x) = 0 . (21)

This permits to define the equivalent control in the form

ueq(x) = −
(

LGσ(x)
)−1

Lfσ(x) . (22)

This means that as a condition for the equivalent control
definition is that the matrix LGσ(x) must be invertible.
Note also that the equivalent control must satisfy −1 ≤
ueq(x) ≤ 1 which is the necessary and sufficient condition
for the sliding mode existence over the surface S .

The expression of the equivalent control can be devel-
oped as follows

ueq(x) = −
(∂σ(x)

∂x⊤ G(x)
)−1(∂σ(x)

∂x⊤ f (x)
)

(23)

which permits to establish the equivalent control for the
system as follows

ueq(x) =





ueqa

ueqb

ueqc



 =







1
x4+x5

(2rcx1 − x4 + x5 + 2ea)
1

x4+x5
(2rcx2 − x4 + x5 + 2eb)

1
x4+x5

(2rcx3 − x4 + x5 + 2ec)






.

(24)
Since the sliding mode is reached the state equation of
the system is expressed as

ẋ = f (x) − G(x)
(

LGσ(x)
)−1

Lfσ(x) . (25)

4.2 Sliding surface accessibility

Let consider the following Lyapunov function

V
(

σ(x)
)

=
1

2
σ

⊤(x)σ(x) . (26)

It is a semi-definite function, it is identically zero over
the surface S , ie when σ(x) = 0 and positive when

σ(x) 6= 0 . The quantity V
(

σ(x)
)

can be interpreted

as the distance from the position of the point x in the
state space to the desired surface S . Therefore, in order
to satisfy the condition σ(x) 6= 0 , the discrete control u

must exercise a closing or opening action, which permits

to decrease the distance V
(

σ(x)
)

, this means that the
variation of this function in the time must be strictly
negative, then

d

dt
V

(

σ(x)
)

= σ
⊤(x)σ̇(x) < 0 . (27)

This is the condition for the trajectory attraction toward
the sliding surface.

Referring to (21) and (27), if σ(x) 6= 0 , replacing
ueq(x) by u , then the time derivative of the Lyapunov
function can be expressed as follows

V̇
(

σ(x)
)

= σ
⊤(x)

(

Lfσ(x) + LGσ(x)u
)

< 0 . (28)

Likewise, if σ(x) = 0 , then

V̇ (σ(x)
)

= σ
⊤(x)

(

Lfσ(x) + LGσ(x)ueq

)

= 0 . (29)

Now, if we consider that the switching frequency is infinite
or sufficiently high, we can suppose with good approxi-
mation that the state vector x takes the same value in
the both case (28) and (29). Thus, subtracting (29) from
(28), the restriction (27) can be rewritten as follows

V̇
(

σ(x)
)

= σ
⊤(x)LGσ(x)

(

u − ueq(x)
)

< 0 . (30)

This inequality can be achieved by applying the control
vector given by

u = − sign
(

σ
⊤(x)LGσ(x)

)⊤
. (31)

And finally, the switch position functions

d =
1

2

(

1 − sign
(

σ
⊤(x)LGσ(x)

)⊤)

. (32)

Where sign designs the sign function and 1 is an m

dimensional column vector constituted of 1 in each entry.
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Fig. 4. The compensation of three-phase and the neutral currents
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Fig. 5. Harmonics spectrum of the mains currents before and after
compensation

Fig. 6. Harmonics and reactive power compensation under load
change

5 SIMULATION RESULTS

The performances of the developed sliding mode con-
trol were verified through simulation using MATLAB
software. The polluting load is constituted with three-
phase thyristor rectifier, single-phase thyristor rectifier
and single-phase diode rectifier. The resulting load cur-
rents are thus deformed and unbalanced. The mains pa-
rameters of the system are

Phase-to-neutral voltage source 230 V rms, 50 Hz

Source inductance Ls = 100 µH

DC-bus capacitors C1 = C2 = 5 mF

DC-bus voltage reference V ∗
dc = 1000 V

Inductor filter Lc = 2 mH

The mains simulation results are illustrated in the fol-

lowing figures. First, in Fig. 4 it can be seen that the

three-phase and the neutral currents are correctly com-

pensated. In fact, the spectrum analysis in Fig. 5 shows

that without active filtering, the mains current contain
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Fig. 7. The instantaneous, real and imaginary power

Fig. 8. The DC-bus voltage regulation

positive sequence harmonics 6h+1 (7th, 13th, . . . ), nega-

tive sequence harmonics 6h− 1 (5th, 11th, . . . ), and zero

sequence harmonics 6h − 3 (3rd, 9th, . . . ), with h ≥ 1
designs the harmonic order. Note that the zero sequence

harmonics is the result of the 4th -wire (neutral), this se-

quence does not appears in the three-wire systems. With
introducing active filtering action, these components are
almost canceled.

Figure 6 illustrates the performances of the active fil-
ter controller to guarantee source current in sinusoidal
form and in phase with mains voltage, under load change,
where it can be seen that the power factor and the total
harmonic distortion are both excellently improved before
and after load change. This can be observed also in Fig. 7
where the instantaneous real and imaginary power is rep-
resented. The imaginary power is almost canceled, and
the real power drawn from the AC source is practically
free of the alternating part of the load power. The real
power spectrum in Fig. 7(b) shows effectively that the

2hth harmonic order components in the load power are
mitigated in the source side. This quality is also observed
after load change as it is illustrated in Fig. 7(c).

Table 1. Detailed results of three-phase and neutral currents com-
pensation

3-phase, Neutral t < 0.2 s t > 0.2 s
Load Source Load Source

THD (%)

a phase 28.29 01.60 26.15 02.00
b phase 27.67 01.45 24.83 01.86
c phase 23.76 01.76 23.59 01.90
Neutral 31.31 – 31.31 –
RMS
a phase 54.03 54.34 98.42 93.12
b phase 58.74 54.73 105.57 93.05
c phase 65.21 54.44 108.57 92.48
Neutral 13.10 – 13.10 –

Table 2. Detailed results of instantaneous real and imaginary pow-
ers compensation

3-phase, Neutral t < 0.2 s t > 0.2 s
Load Source Load Source

THD (%)

p 15.98 03.66 16.85 03.69
q 107.6 – 87.90 –

DC component
p(×104) 03.80 03.71 06.64 06.56

q(×104) 01.29 – 02.58 –

Tables 1 and 2 summarize the detailed results of cur-
rent and instantaneous power compensation. Note that
the total harmonic distortion of the real power is com-
puted to DC component.

The DC-bus voltage regulation is shown in Fig. 8 the
DC-bus is charged and the voltage level Vdc reaches the
predefined value V ∗

dc with excellent response (950 V <

Vdc < 1050 V in 0.05 s). The excellent dynamic per-
formance is also observed with load change operated at
t = 0.2 s, in fact the DC-link voltage is remained inside
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the bounded range [950 V, 1050 V] and stabilized at V ∗
dc

in 0.1 s. The DC-link unbalance is shown in Fig. 8(c)
where one can remark that the two voltage VC1 and VC2

are sufficiently balanced, accept the existence of small
oscillation ∆Vdc (about 1.3 % of Vdc ) which can be ne-
glected. It should be noted that the DC-link voltage os-
cillation Vdc and ∆Vdc are strongly depending of the ca-
pacitors value. In fact, it is known that to keep these os-
cillation inside an acceptable bounded ranges, generally
a large capacitors is recommended, the two capacitors in-
crease considerably when C1 and C2 are chosen small,
for this reason, in this paper this parameters is relatively
large.

6 CONCLUSION

In this paper, a sliding mode control for three-phase
three-leg voltage source inverter based four-wire shunt ac-
tive filter is applied. The system is observed as a MEMO-
decoupled nonlinear system, which permits a simple im-
plementation. The simulation results show the ability of
this method to track references with minimum error, fast
response and high robustness. A low line current THD,
and high power factor are provided even load change.

Finally, as critics, it should be noted that, the decou-
pled nature of the used VSI topology is simple to analyze
but we have seen that it need very large capacitors value
in the DC-bus.

For the sliding mode control, it is known that the
switching frequency presents its principal incontinent.
The replacement of the three-leg topology by the four-leg
one can resolve the problem of first mentioned critic, and
we know yet that the switching frequency stabilization is
possible. This will make the object of the continuation for
this work.
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