
Journal of ELECTRICAL ENGINEERING, VOL. 62, NO. 4, 2011, 227–232

SERVICE ORIENTED ARCHITECTURAL MODEL
FOR LOAD FLOW ANALYSIS IN POWER SYSTEMS

Balasingh Moses MUTHU
∗
— Ramachandran

VEILUMUTHU
∗∗

— Lakshmi PONNUSAMY
∗∗∗

The main objective of this paper is to develop the Service Oriented Architectural (SOA) Model for representation of
power systems, especially of computing load flow analysis of large interconnected power systems. The proposed SOA model
has three elements namely load flow service provider, power systems registry and client. The exchange of data using XML
makes the power system services standardized and adaptable. The load flow service is provided by the service provider,
which is published in power systems registry for enabling universal visibility and access to the service. The message oriented
style of SOA using Simple Object Access Protocol (SOAP) makes the service provider and the power systems client to exist
in a loosely coupled environment. This proposed model, portraits the load flow services as Web services in service oriented
environment. To suit the power system industry needs, it easily integrates with the Web applications which enables faster
power system operations.

K e y w o r d s: power systems, XML, WSDL, SOAP, SOA

1 INTRODUCTION

The large interconnected power systems require a com-
mon computational environment for interaction between
the client and the service provider. The power system
needs a communication among the service provider and
client in a heterogeneous environment. Since there is a
tremendous growth in power systems, it needs an archi-
tecture that allows plugging in new services or upgrad-
ing existing services in a granular fashion to address the
new requirements. The power systems require the ser-
vices which are available in the universal visibility to
be accessed by the clients. At real time operations, an
enormous quantum of data has to be exchanged among
large interconnected power systems. The data must be
exchanged in a reliable manner. The power flow services
are essential at the time of planning and operations to
carry out any type of power system applications by the
power system engineer.

To monitor the power flow in the system, the Supervi-
sory Control and Data Acquisition Systems (SCADA) are
developed based on different platforms through Remote
Terminal Units (RTU) linked by communication chan-
nel. Qui and Gooi developed a Web-Based SCADA dis-
play systems for monitoring load flow to solve the legacy
issues using Java Native Interface (JNI), which is re-
ally a tedious process [1]. Chen and Liu demonstrated
the potential advantages of the Web as the platform for
developing and deploying complex power system simu-
lations by using the concept of distributed technologies
[2]. The RMI based load flow monitoring developed by
Nithiyananthan and Ramachandran enables the neigh-
bouring power systems to access the remote load flow

server by the power system clients [3]. Molcolm et.al mod-
elled a complete Web based and platform independent
power system simulation package with various analyses
in a distributed and clustered environment [4]. The tech-
nologies like SCADA, Common Object Request Broker
Architecture (CORBA), Remote Procedure Calls (RPCs)
and Remote Method Invocation (RMI) communication
do not guarantee the exploitation of the full functional-
ity among heterogeneous environment [6]. To overcome
the complexity and proprietary nature of the above men-
tioned technologies, the SOA model has been developed
for representation of power systems which provides the
powerful set of features based on open standards like
XML, SOAP, WSDL and UDDI. The model supports in-
teroperability between services on different platforms in
a reliable, scalable and adaptable manner.

2 XML REPRESENTATION

OF LOAD FLOW DATA

As the size of power systems is large, data exchange is
a major concern because of the complex nature of power
system operations. New participants join the power in-
dustries as generation companies, transmission compa-
nies, and distributors. Because of the physical connec-
tivity of power systems, all levels of industry like gener-
ation, transmission and distribution need proper opera-
tional data. The exchange of data needs to be reliable,
error-free and adaptable to different types of software
used for power system operations in the related power
system industries. In power systems, data can be output
of a process while being input for another. In real time

Department of Electrical and Electronics Engineering, Anna University, No 109, Academic Block, Tiruchirappalli 620 024, India,
balasinghmoses@gmail.com

DOI: 10.2478/v10187-011-0036-9, ISSN 1335-3632 c© 2011 FEI STU

228 B. M. Muthu — R. Veilumuthu — L. Ponnusamy: SERVICE ORIENTED ARCHITECTURAL MODEL FOR LOAD FLOW . . .

Fig. 1. Proposed SOA model for Load Flow Analysis

analysis, huge amount of data are being exchanged among
interconnected systems. IEEE common format is utilized
while representing the power system data in XML. The
data exchange must have a protocol that makes the data
meaningful for each power system operation. The ex-
change of power system data using eXtensible Markup
Language (XML) offers trouble-free integration with the
Web and Intranet / Internet applications.

The power systems bus data store all specified bus
values and the violation of their operating limits. The
power systems bus data required for load flow analysis is
represented as follows

<?xml version=”1.0” encoding=”UTF-8”?>

<GENERAL>

<Base MVA>Base value of the system</Base MVA>

<NB> Number of Buses </NB>

<TOLERANCE> Tolerance value</TOLERANCE>

< IDENTIFICATION>Power Systems Bus Data

</IDENTIFICATION>

</GENERAL>

<SYSTEM BUS DATA>

<SLACK BUS>

<VOLTAGE> voltage at the bus</VOLTAGE>

<ANGLE>Load angle of the Bus </ANGLE>

</SLACK BUS>

<GENERATOR BUS>

<MW> Real Power </MW>

<VOLTAGE>Generating Voltage</VOLTAGE>

</GENERATOR BUS>

<LOAD BUS>

<MW> Real Power </MW>

<MVAR>Reactive Power </MVAR>

</LOAD BUS>

<LIMITS unit=’MVAR’>

<MAX>Maximum Reactive Power Limit</MAX>

<MIN>Minimum Reactive Power Limit </MIN>

</LIMITS>

</SYSTEM BUS DATA>

SYSTEM BUS DATA is the root element. The child
elements are Slack bus, Generator bus and Load bus. The
power systems transmission line data store all the line

values and the capability of the line to withstand the
maximum loading. The power systems line data required
for load flow analysis is represented as follows

<?xml version=”1.0” encoding=”UTF-8”?>
<GENERAL>

<NL> Number of lines </NL>

< IDENTIFICATION>Power Systems Line Data

</IDENTIFICATION>

</GENERAL>

<SYSTEM LINE DATA >

<SENDING BUS> Starting line </SENDING BUS>

<RECEIVING BUS>Ending line</RECEIVING BUS>
<R> Resistance of the line> </R>

<X> Reactance of the line> </X>

<Loading MVA> Maximum loading of the line

</Loading MVA>

<Transformer> Rating </Transformer>

<Shunt Capacitor>Rating </Shunt Capacitor>
</SYSTEM LINE DATA>

The XML document created can be edited online by
the use of Document Object Model (DOM). With the
help of XML style sheet language (XSL), XML document
can be converted to any other form such as html, PDF,
postscript, even XML document. But, often a name con-
flict may occur when two different documents use the
same name describing two different types of elements.
To overcome this difficulty, XML Namespaces are used.
XML elements are used with prefixes, which are mapped
to a URL (Uniform Resource Locator) that usually cor-
respond to an Internet resource, usually the IP addresses.

3 PROPOSED SOA MODEL

FOR LOAD FLOW ANALYSIS

Service Oriented Architectural model for represen-
tation of load flow services is shown in Figure1. The
SOA model has three elements namely Load Flow Ser-
vice Provider, Power Systems Registry and Power Sys-
tems Client. The power system load flow services are

Journal of ELECTRICAL ENGINEERING 62, NO. 4, 2011 229

I0(A)

Load flow service providerPower system client

Contract

Application

logic

Service

gateway

Service interfaces

Ybus, P, Q, (÷ V ê)

Application

logic

Fig. 2. Load Flow Service contract

categorized in to Bus admittance matrix (Y bus), Real
power (P), Reactive power (Q), load angle (δ) and Bus
voltage magnitude (|V |) services. A Load Flow Service
provider offers the above services and describes the inter-
face information of the services in interface description
language called LFSDL (Load Flow Services Description
Language) which is in the form of XML that makes the
services available in the Power System Registry.

Services are the key building blocks of SOA. A service
is a reusable function that can be invoked by another
component through a well-defined interface. Services are
loosely coupled, that is, they hide their implementation
details and only expose their interfaces. In this manner,
power system client need not be aware of any underly-
ing technology or programming language which the ser-
vice is using. The loose coupling between services allows
for a quicker response to changes than the existing con-
ventional applications for power system operations. This
results in a much faster adoption to the need of power
system industry.

The power system clients discover the service available
in the registry by service names and acquire the interface
information by LFSDL of the load flow services. Based
on this information, the clients have a binding with the
load flow service provider and can invoke services using
Simple Object Access Protocol (SOAP).

4 IMPLEMENTATION OF

PROPOSED SOA MODEL

The services included in the load flow service provider
are the formation of Bus admittance matrix (Ybus), es-
timation of Real power (P), Reactive power (Q), load
angle (δ) and Bus voltage magnitude (|V |). In the large
interconnected systems, the client can invoke any of the
above services which are required at the time of power
system operations through well-defined interfaces. The
various stages involved in the implementation of proposed
SOA model for Load Flow Analysis are service interfaces,
service description, service configuration, service map-
ping, service publishing, service discovering and service
invoking. The implementation details of these stages are
explained in the following sections.

4.1 Load Flow Service interfaces

The service interface implements the contract between
the power system client and load flow service provider

as shown in Figure 2. This contract allows them to ex-
change information between clients and service providers.
The service interface is responsible for all of the imple-
mentation details needed to perform the communication
between the clients and service provider. In this proposed
model, five interfaces are implemented for the formation
of Bus admittance matrix, estimation of Real power, Re-
active power, load angle and Bus voltage magnitude.

Decoupling the service interface code from the service
implementation code enables the system to deploy the
two code bases on separate tiers, potentially increasing
the deployment flexibility.

The service interface for computing Y bus is as follows

package loadflow;
public interface ybus extends Remote
{
public String computeybus() throws Remote Exception;
}

4.2 Describing the Load Flow Services

LFSDL is used as the metadata language for defin-
ing the load flow services. It describes how the ser-
vice providers and client communicate with each other.
LFSDL is capable of describing services that are imple-
mented using any language and deployed on any platform.
It represents information about the interface and seman-
tics of how to invoke a service. It contains the information
about the data type, binding and address information for
invoking the services from the service provider.

The Ybus service is descried as follows

<definitions name=”loadflowservice”
targetNamespace=”urn:LoadFlow”>

<types>
<schema targetNamespace=”urn:LoadFlow”

xmlns:tns=”urn:LoadFlow”xmlns: soap11-

enc=”http://schemas.xmlsoap.org/soap/encoding/” >

<complexType name=”computeybus”>

</complexType>
<element name =”computeybus”

type =”tns:computeybus”/>

<element name =”computeybusResponse”
type =”string”/>

</types>
<message name =”ybus computeybus”>

<portType name =”ybus”>
<operation name=”computeybus”>

< input message=”tns:ybus computeybus”/>

<output message
=”tns:ybus computeybusResponse”/>

</operation>
</portType>

<binding name=”ybusBinding” type=”tns:ybus”>

<soap:binding transport= ”http://schemas.
xmlsoap.org/soap/http” style=”document”/>

<operation name=”computeybus”>
<soap:operation soapAction=””/>

<soap:body use=”literal”/>

</output>
</operation>

</binding>
<service name=”Loadflowservice”>

<port name=”ybusPort” binding=”tns:ybusBinding”>

<soap:address

230 B. M. Muthu — R. Veilumuthu — L. Ponnusamy: SERVICE ORIENTED ARCHITECTURAL MODEL FOR LOAD FLOW . . .

location=”REPLACE WITH ACTUAL URL”/>
<soap:address
location=”REPLACE WITH ACTUAL URL”/>

</port>
</service>
</definitions>

The LFSDL definition document consists of seven key
structural elements for describing load flow service. The
<definition> element defines the name of the service as
’loadflowservice’ and declares the namespace as ’Load-
Flow’. The <types> element defines the data types that
would be used to describe the Bus and Line data. The
<message> element represents a logical definition of the
data being transmitted between the client and the service
provider .The <portType> element defines the abstract
definition of the operation (computeybus) of the service,
request and response messages. The <binding> element
specifies a concrete protocol (SOAP) used for represent-
ing messages. The <service> element represents the ser-
vice to be invoked over multiple bindings. The <port>
element specifies an address (ybusport) for binding to the
service.

4.3 Configuring the Load Flow Services

The services related to computing of load flow solu-
tions are configured as follows

<service name=”loadflowservice”
targetNamespace=”urn:LoadFlow”
typeNamespace=”urn:LoadFlow”
packageName=”loadflow”>
¡interface name=”loadflow.ybus”/>
¡interface name=”loadflow.realpower”/>
¡interface name=”loadflow.reactivepower”/>
¡interface name=”loadflow.loadangle”/>
¡interface name=”loadflow.busvoltagemagnitude”/>
</service>

This configuration file contains the information and
details about the deployed load flow services (ybus, re-
alpower, reactivpower, loadangle, busvoltagemagnitude)
and metadata such as their service name (loadflowser-
vice), namespace(LoadFlow) and description.

4.4 Mapping the Services

The mapping information is specified by an XML doc-
ument. This document describes how the properties of
the Ybus object have to be translated and mapped into
XML. The mapping information for Ybus object is as
follows

<package-mapping>
<package-type> loadflow</package-type>
<namespaceURI>urn:LoadFlow</namespaceURI>

</package-mapping>
< java-xml-type-mapping>

< java-type>
loadflow.ybus computeybus RequestStruct

</java-type>
<root-type-qname xmlns:typeNS=”urn:LoadFlow”>

typeNS:computeybus
</root-type-qname>
<qname-scope>complexType</qname-scope>

</java-xml-type-mapping>

<port-mapping>

<port-name>ybusPort</port-name>

< java-port-name>ybusPort</java-port-name>
</port-mapping>

<service-endpoint-interface> loadflow.ybus

</service-endpoint-interface>

<wsdl-port-type xmlns:portTypeNS=”urn:LoadFlow”>
portTypeNS:ybus</wsdl-port-type>

<wsdl-binding xmlns:bindingNS=”urn:LoadFlow”>

bindingNS:ybusBinding</wsdl-binding>

<service-endpoint-method-mapping>
< java-method-name>computeloadangle

</java-method-name>

</service-endpoint-method-mapping>

The mapping file describes the elements like package,
type, port, method, and endpoint and they have to be
mapped into XML. The mapping information for the
other services are described similar manner.

4.5 Publishing the Services in Registry

The proposed SOA model for Load Flow Analysis re-
quires the common registry to deploy the services for easy
integration, reuse and effective governance of services to
meet the growing requirements. The registry allows the
power system client to efficiently discover and communi-
cate with the services. The main purpose of the registry
is to allow fast and reliable communication and interop-
erability among diverse applications.

4.6 Discover the Load Flow Services

At the time of operation, the power system clients
discover the required service which is available in the
Registry. Once the service is discovered, the client will
query the services by their names to get the binding
information and the identification of the provider. Based
on this information, the clients access the provider for
invoking the services.

The procedure to discover the services is as follows

RegistryService rs = connection.getRegistryService();

BusinessQueryManager qm =

rs.getBusinessQueryManager();
BulkResponse response1 =

qm.getRegistryObjects(”Service”);

Collection objects = response1.getCollection();

Collection c=object.getServiceBindings();
ServiceBinding sb=(ServiceBinding)oi.next();

String uri=sb.getAccessURI();

The procedure involves the establishment of connec-
tion to the registry, querying the load flow service, get-
ting the binding information and accessing URI to invoke
a service.

4.7 Binding and Invoking the Services

The power system clients communicate with the load
flow service provider using SOAP message as shown in
Figure 3. The XML form of Bus and Line data are at-
tached as input parameter in the SOAP body. The SOAP
Body represents the mandatory processing information

Journal of ELECTRICAL ENGINEERING 62, NO. 4, 2011 231

Fig. 3. SOAP communications (Client - Provider)

between the client and service provider. SOAP uses the
HTTP POST for request and response in the form of
messages.

SOAP messages are configured for load flow service
invocation and response. The request message consists of
IP address of the service provider and the required power
system data in XML form. The following cod segment
delineates how bus and line data have been attached to
the SOAP message.

String urn = ”urn:LoadFlow”;

MessageFactory messageFactory=

MessageFactory.newInstance();

SOAPMessage message =

messageFactory.createMessage();

SOAPPart soapPart = message.getSOAPPart();

SOAPEnvelope envelope = soapPart.getEnvelope();

SOAPBody body = envelope.getBody();

SOAPElement bodyElement = body.addChildElement

(envelope.createName(operation, ””, urn));

FileInputStream fs;

fs=new leInputStream(”\busdata.xml”);

message.addAttachmentPart(attachment);

fs=new FileInputStream(”c:\\ linedata.xml”);

message.addAttachmentPart(attachment1);

A binding is described how the SOAP request and
response messages have been sent through the transport
protocol. The following code segment delineates how the
services are being invoked

SOAPConnection connection =

soapConnFactory.createConnection();

SOAPMessage reply = connection.call(message,destination);

reply.writeTo(output1);

SOAPPart soapPart1 = reply.getSOAPPart();

SOAPEnvelope envelope1 = soapPart1.getEnvelope();

SOAPBody body1 = envelope1.getBody();

Iterator iter = body1.getChildElements();

Node resultOuter = ((Node) iter.next()).getFirstChild();

Node result = resultOuter.getFirstChild();

connection.close();

Thus, establishing the SOAP connection to the desti-

nation as specified in the SOAP message, the power sys-

tems client is capable of invoking the required load flow

service as given in the SOAP message at the specified

port. The Bus and Line data content in the SOAP body

are provided to the service. The provider sends an entire

document rather than sending a set of parameters to the

clients. The SOAP based communication model defines

a loosely coupled and document-driven communication.

Hence, the proposed SOA model for load flow analysis

makes the service provider and the power systems client

to exist in a loosely coupled environment.

5 RESULTS

The SOA model has been implemented in Windows

NT based XP workstations connected in an Ethernet

LAN. The implementation carried out in three different

PC’s and the specifications are shown in Table 1.

Table 1.

Name of CPU Memory IP Addressthe PC

Load Flow Intel
Service core 2 duo 2 GB 10.1.105.228
Provider 2.6GHz

Power Intel
system core 2 duo 2 GB 10.1.105.226
Registry 2.0GHz

Power Intel
System core 2 duo 2 GB 10.1.105.227
client 2.0GHz

232 B. M. Muthu — R. Veilumuthu — L. Ponnusamy: SERVICE ORIENTED ARCHITECTURAL MODEL FOR LOAD FLOW . . .

The SOAP request message contains the line and bus
data for load flow analysis is shown below.

Part 0 13271847.1268718003027

Content-Type: text/xml; charset=utf-8
<SOAP-ENV:Envelope xmlns:—->

<SOAP-ENV:Header/>
<SOAP-ENV:Body>

<compute xmlns=”urn:LoadFlow”/>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Part 0 13271847.1268718003027
Content-Type: text/plain Content-ID: data1

< linedata>
<nb>8</nb>

<nl>13</nl>

<tol>0.0001</tol>
< list> <sb>1</sb>

<eb>2</eb>
< lre>0.02</lre>

< lim>0.06</lim> </list>
- - - - - -

</linedata>

Part 0 13271847.1268718003027
Content-Type: text/plain

Content-ID: data2
<busdata>

<vsp>1.06</vsp>

<psp>0.7</psp>
<qsp> -0.15</qsp>

<qmin>0.0</qmin>
<qmax>2.5</qmax>

- - - - - -
</busdata>

The SOAP response for the load flow solutions using
proposed SOA model is given below.

Part 0 13271847.1268718003027- -

<env:Envelope xmlns:env=”http://schemas.xmlsoap.org
/soap/envelope/” xmlns:enc=”http://schemas.xmlsoap.

org/soap/encoding/”xmlns:ns0=”urn:LoadFlow”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<env:Body>
<ns0:computeResponse>

<result>
< iterations>13</iterations>

<vlist> <v>1.0600</v> <v>1.1000</v>—–</vlist>
<deltalist> <delta> -0.9554</delta> <delta> -

1.0054</delta>—–</deltalist>

<ploss>0.0454</ploss> <qloss> -0.4811</qloss>
</result>

</ns0:computeResponse>
</env:Body>

</env:Envelope>

The above SOAP response for load flow solutions can
be parsed partially or totally to provide required data
and the SOAP request will be generated dynamically to
initiate other power system operations.

6 CONCLUSION

An effective Service Oriented Architectural model has
been developed for representing load flow analysis of a
power system and tested for a sample of 8, 14 and 30
bus systems. This model has the ability to analyze the

load flow that may arise in the power system network by
increasing the generation, transmission and distribution.
Any number of power system clients can be served with
out any limitation in this service oriented environment.
The various power system services can be plugged into
this model and the services are made available any time
and any where for the power system operations.

References

[1] QUI, B.—GOOI, H. B. : Web Based SCADA Display System
for Access via Internet, IEEE Transactions on Power System 15

No. 2 (2000).

[2] CHEN, S.—LIU, F. Y. : Web Based Simulations of Power Sys-
tems, IEEE Transactions on Computer Applications in Power
15 No. 1 (2002), 35–40.

[3] NITHIYANATAN, K.—RAMACHANDRAN, V. : RMI Based
Multi-Area Power System Load Flow Monitoring, IJECE 3 No.
1 (2004), 28–30.

[4] IRVING, M,—TAYLOR, GARETH—HOBSON, P. : Plug in to
Grid Computing, IEEE Trans. on Power and Energy Magazine
2 No. 2 (2004), 40–44.

[5] HASAN DAG—UMAT UTKAN : An XML based Data Ex-
change Model for power System Studies, ARI 54 No. 2 (2004).

[6] SHEKHAR, M.—KELAPURE, S. S. K.—SASTRY, A.—RAO,
J. G. : Application of Web Services in SCADA Systems, Inter-
national Journal of Emerging Electric Power Systems 6 No. 1

(2006).

[7] COMER, E. : Understanding Web Services: XML, WSDL,
SOAP, and UDDI, Addison-Wesley, 2002.

[8] SKOCZYLAS, R.—NAGAPPAN, R. : Developing Java Web
Services, Willey, 2003.

[9] DOUGLAS, K. BARRY : Web Service and Service Oriented
Architecture, Morgan Kaufmann Publisher, 2003.

[10] http://www.service-architecture.com.

Received 5 May 2010

Balasingh Moses Muthu is currently working as a Lec-
turer in the Department of Electrical and Electronics Engi-
neering, Anna University Tiruchirappalli, INDIA. He had re-
ceived his Bachelor of Engineering (Electrical and Electronics
Engineering) from Bharathidasan University, Tiruchirappalli
and Master of Engineering (Power System Engineering) from
Anna University, Chennai, INDIA in 1997 and 2004 respec-
tively. He is currently doing Ph.D in Anna University Chennai,
INDIA. His research interests include Power System Studies,
Distributed Computing and Web Services.

Ramachandran Veilumuthu is currently working as a
Professor of Computer Science and Engineering in College of
Engineering, Guindy, Anna University, Chenai, INDIA. He
has received his Masters of Engineering and PhD in Electrical
Engineering from College of Engineering, Guindy, Anna Uni-
versity, Chennai, INDIA. His research interests include Power
Systems Reliability Engineering, Network Security, Compo-
nent Technologies, Soft Computing and Web Services.

Lakshmi Ponnusamy is currently working as a Assistant
Professor of Electrical and Electronics Engineering in College
of Engineering, Guindy, Anna University, Chenai, INDIA. She
has received her Masters of Engineering and PhD in Electrical
Engineering from College of Engineering, Guindy, Anna Uni-
versity, Chennai, INDIA. Her research interests include Power
Systems Stability, Power Quality and Intelligent Controllers.

