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ESTIMATION OF THE FUNDAMENTAL FREQUENCY
OF THE SPEECH SIGNAL COMPRESSED BY G.723.1
ALGORITHM APPLYING PCC INTERPOLATION

Zoran N. MILIVOJEVIĆ
∗
— Darko BRODIĆ
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In this paper the results of the estimation of the fundamental frequency of the speech signal modeled by the G.723.1
method are analyzed. The estimation of the fundamental frequency was performed by the Peaking-Peaks algorithm with the
implemented Parametric Cubic Convolution (PCC) interpolation. The efficiency of PCC was tested for Keys, Greville and
Greville two-parametric kernel. Depending on MSE a window that gives optimal results was chosen.
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1 INTRODUCTION

ITU (International Telecommunication Union) has de-
fined the standard H.324 for specification of components,
protocols and procedures which make multimedia com-
munication services in networks with packets communi-
cation possible [1]. Besides, H.324 defines audio and video
coders-decoders. G.723.1 is an audio codec intensively
used in VoIP (Voice over IP) communications [2]. G.723.1
provides the speech compression to 5.3 kb/s and 6.3 kb/s.
In the first case ACELP (Algebraic Code Excited Linear
Prediction) algorithm and in the second MP-MLQ (Mul-
tipulse Maximum Likelihood Quantization) algorithm are
applied. The frame size is 30 ms with 240 samples with
sampling of 8 kHz. Each frame is being processed in the
following 7.5 ms. The frame is divided into smaller frames
whose duration is 7.5 ms. Delaying (6797ms), delaying
variations, packets losses and echo influence on the quality
of speech transmitted by means of packet network. Eval-
uation of MOS (Mean Opinion Score) test is acceptable
3.4 (5.3 kbps) and good 3.8 (6.3 kbps) [3]. With G.723.1
coding the fundamental frequency estimation is firstly be-
ing done, and than the estimated fundamental frequency
is used in the following steps of the speech signal coding.
In the decoding process the speech signal is reconstructed
which implies renewal of the fundamental frequency [5].

After the transfer of the speech signal by the VoIP ser-
vice, on the reception side there is a need for the signal
processing (speech and speaker recognition, echo cancel-
ing, improvement of the quality and the speech articu-
lateness etc.). The characteristic example is the correc-
tion of the speech signal quality by reducing of dissonant
frequencies [6, 7]. In the speech signal processing there is
a need for determination of the fundamental frequency.
A number of algorithms were developed for determina-
tion of the fundamental frequency where the analysis is
performed in the time and frequency domain [8–11].

The frequently applied method for determination of

the fundamental frequency is based on the peaking peaks

of the amplitude characteristic in the specific frequency

range. This method is used for analyzing of the signal

values in the spectrum on frequencies on which the Dis-

crete Fourier Transform (DFT) was calculated. Most of-

ten the real value of the fundamental frequency is not

there on the frequencies where DFT is calculated, but

lies between the two spectrum samples. That causes

the frequency estimation error that lies in the interval

[−(FS/(2N)Hz, (FS/(2N)Hz], where FS is the sampling

frequency and N is the DFT window size. One way of

reducing the error is determination of the interpolation

function and estimation of the spectrum characteristics

in an interval between the two samples. This procedure

gives the reconstruction of the spectrum on the base of

DFT. The spectrum parameters are then determined by

analytic procedures (differentiation, integration, extreme

values, . . . ).

Determination of spectral characteristic values be-

tween DFT samples is taken as the local convolution of

the neighboring DFT samples and interpolation kernel

(piece-wise polynomial interpolation) [12–14]. Two meth-

ods are frequently used for interpolation: a) the cubic

B-spline interpolation [12] and b) the Parametric Cubic

Convolution (PCC) interpolation. From the point of view

of the fastness of the maximum position estimation the

application of PCC interpolation kernel is more suitable,

because it is possible to find the maximum position di-

rectly (by means of a formula) using the sampled data

without convolution being applied. The detailed analy-

sis of the fundamental frequency estimation by means of

PCC interpolation is described in the paper [15]. In this

paper there is a formula intended for analytical calcula-

tion of the fundamental frequency without convolution.
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∗∗
University of Belgrade, Technical Faculty

Bor, Vojske Jugoslavije 12, 19210 Bor, Serbia

DOI: 10.2478/v10187-011-0030-2, ISSN 1335-3632 c© 2011 FEI STU
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Fig. 1. Algorithm of estimate of fundamental frequency

The results of the application of PCC interpolation for

determining of the fundamental frequency in the condi-

tions of application of some window in the processing of

the discrete speech signal are presented in [16]. Through

some simulation procedures algorithm efficiency analyses

have been done where, as a quality measure of an algo-

rithm, the Mean Square Error (MSE) has been used. The

best results were shown by the algorithm with the imple-

mented Blackman window. The results of the fundamen-

tal frequency estimation of the speech signal modeled by

SYMPES (Systematic Procedure to Model Speech Sig-

nals via Predefined “Envelope and Signature Sequences)

method are shown in [17].

Further in this paper there will be presented some re-

sults of fundamental frequency estimation in audio and

speech signals compressed by G.723.1 algorithm in order

to determine the fundamental frequency using PCC in-

terpolation kernels (Keys, Greville and two parametric

Greville kernel) and some window functions (Hamming,

Hanning, Blackman, Rectangular, Kaiser and Triangular

window). The fundamental frequency estimation was per-

formed on the base of the analytical expression from [15]

for Keys kernel. For Greville and two-parametric Greville

kernels we have determined analytical form for determi-

nation of the fundamental frequency position. As a mea-

sure of the quality of interpolation algorithm MSE (Mean

Square Error) will be applied. On the base of minimum

values of MSE optimum kernel parameters and the cor-

responding window function will be determined.

This paper is organized as follows: In Section 2 there is

a description of the PCC algorithm. In Section 2.a there

are definitions of interpolation kernels. In Section 2.b the

algorithm for determination of optimal kernel parameters

is presented. In Section 3 numerical MSE results in the

estimation of fundamental frequency of the speech sig-

nal modeled by the G.723.1 method are presented. The

comparative analysis of the results and the choice of the

optimal kernel and window function are shown in Sec-

tion 4. Section 5 represents the conclusion.

2 ALGORITHM OF FUNDAMENTAL

FREQUENCY ESTIMATION

Algorithm for estimation of the fundamental fre-
quency, based on the algorithm from [15], is presented in
Fig. 1. This algorithm is realized in the following steps:

Step 1: Audio or speech signal s(n) is coded by G.723.1
coder.

Step 2: Coded signal is decoded by G.723.1 decoder and
generises signal x(n).

Step 3: Window w(n) whose length is N applies to de-
coded signal x(n).

Step 4: Spectrum X(k) is calculated by using DFT:

X(k) = DFT
(

x(n)
)

, (1)

The spectrum is calculated in discrete points k =
0, . . . , N − 1, where N is the length of DFT. The real
spectrum of signals x(n) is continuous, whereas DFT
defines the values of the spectrum at some discrete
points.

Step 5: By using peak picking algorithm, the position of
the maximum of the real spectrum that is between k th
and (k + 1)th samples is determined, where the values
X(k) and X(k + 1) are the highest in the specified
domain.

Step 6: The position of the maximum of the spectrum
is calculated by PCC interpolation. The reconstructed
function is

Xr(f) =

k+L/2
∑

i=k−L/2+1

pir(f − i) , k ≤ f ≤ k + 1 , (2)

where pi = X(i), r(f) is the kernel of interpolation and
L the number of samples that participate in interpola-
tion.

Step 7: By differentiation Xr(f) and zero adjustment
the position of maximum is determined; it presents the
estimated fundamental frequency fe .

The quality of the algorithm for the estimate of fun-
damental frequency can be also expressed by MSE

MSE = (f − fe)2, (3)

where f is true fundamental frequency and fe is funda-
mental frequency estimate.
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2.1 Interpolation Kernel

Next, we give definitions of the interpolation kernels
which are tested in this paper

a) Keys interpolation kernel [12, 13]

r(f)=











(α + 2)|f |3 − (α + 3)|f |2 + 1 , |f | ≤ 1 ,

α|f |3 − 5α|f |2 + 8α|f | − 4α , 1 ≤ |f | ≤ 2 ,

0 , otherwise.

(4)

For L = 4 from (2) position of maximum is determined

fmax =

{

k − c
2b , a = 0 ,

k + −b±
√

b2−ac
a , a 6= 0 ,

(5)

where:

a = 2
(

αpk−1 + (α + 2)pk − (α + 2)pk+1 − αpk+2

)

,

b = −2αpk−1 − (α + 3)pk + (2α + 3)pk+1 + αpk+2 ,

c = −αpk−1 − αpk+1 . (6)

b) Greville interpolation kernel [17]

r(f) =































































(

α + 3
2

)

|f |3 −
(

α + 5
2

)

|f |2 + 1 ,

0 ≤ |f | ≤ 1 ,
1
2
(α − 1)|f |3 −

(

3α − 5
2

)

|f |2

+
(

11
2

α − 4
)

|f | −
(

3α − 2) ,

1 ≤ |f | ≤ 2 ,

− 1
2
α|f |3 + 4α|f |2 − 11

2
α|f | + 9α ,

2 ≤ |f | ≤ 3 ,

0 , 3 ≤ |f | .

(7)

For L = 6 from (2) and (7) position of maximum is
determined according to (5), where

a = − 3
2
αpk−2 + 3

2
(α − 1)pk−1 + 3

(

α + 3
2

)

pk

− 3
(

α + 3
2

)

pk+1 −
3
2
(α − 1)pk+2 + 3

2
αpk+3 ,

b = −2αpk−2 + (−3α + 2)pk−1 − (2α + 5)pk

+ 4
(

α + 1
)

pk+1 − pk+2 − αpk+3 ,

c = − 1
2
αpk − 2 +

(

α − 1
2

)

pk−1 −
(

α − 1
2

)

pk+1

+ 1
2
αpk+2 .

(8)

c) Greville two-parametric cubic convolution kernel
(G2P) [17]

r(f)=


















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



























(

α − 5
2
β + 3

2

)

|f |3 −
(

α − 5
2
β + 5

2

)

|f |2 + 1 ,

0 ≤ |f | ≤ 1 ,
1
2
(α − β − 1)|f |3 −

(

3α − 9
2
β − 5

2

)

|f |2+
(

11
2

α − 10β − 4
)

|f | − (3α − 6β − 2) ,

1 ≤ |f | ≤ 2 ,

− 1
2
(α − 3β)|f |3 +

(

4α − 25
2

beta
)

|f |2−
(

21
α − 34β

)

|f | + (9α − 30β) ,

2 ≤ |f | ≤ 3 ,

− 1
2
β|f |3 + 11

2
|β|f |2 − 20β|f |+ 24β ,

4 ≤ |f | .

(9)

For L = 8 from (2) and (9) position of maximum is

determined according to (5), where

a = − 3
2
βpk−3 −

3
2
(α − 3β)pk−2 + 3

2
(α − β − 1)pk−1

+ 3
(

α − 5
2
β + 3

2

)

pk − 3
(

α − 5
2
β − 3

2

)

pk+1

− 3
2
(α − β − 1)pk+2 ±

3
2
(α − 3β)pk+3 + 3

2
βpk+4 ,

b = −2βpk−3 − (2α − 7β)pk−2 + (−3α + 6β + 2)pk−1

−
(

2α − 5β + 5
2

)

pk + (4α − 10β + 1)pk+1 (10)

+ (3β − 1)pk+2 + (−α + 2β)αpk+3 − βpk+4 ,

c = − 1
2
βpk−3 +

(

− 1
2
α + 2β

)

pk−2 +
(

α − 5
2
β − 1

2

)

pk−1

−
(

α + 5
2
β + 1

2

)

pk+1 +
(

1
2
α − 2β

)

pk+2 + 1
2
βpk+3 .

In (4)–(10) there are α and β parameters. The optimal

values of these parameters will be determined by the

minimal value of MSE, for Keys, Greville and G2P kernel.

For the first two of them

αopt = arg min
α

MSE , (11)

and for the G2P kernel:

(αopt, βopt) = arg min
α,β

MSE , (12)

The detailed analysis in [15–17] showed that the minimal

value of MSE depends on the application of window by

which signal processing x(n) is carried out in time do-

main. MSE will be defined for: a) Hamming, b) Hanning,

c) Blackman, d) Rectangular, e) Kaiser and f) Triangular

window.

2.2 Interpolation Kernel Parameters

Algorithm for determination of interpolation kernel

parameters α and β is realized in the following steps:

Step 1: signal x(n), which was previously coded and de-

coded by G.723.1 algorithm, is modified by the window

function w(n) whose length is N ,

Step 2: spectrum X(k) is determined by the application

of DFT,

Step 3: reconstruction of the continual function that rep-

resents spectrum X(f) is performed by the application

of PCC interpolation,

Step 4: MSE is calculated for various values of parameters

α and β depending on the implemented window,

Step 5: αopt and βopt are determined for which minimal

value of MSE is obtained.
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Fig. 2. MSE(α) for Keys kernel and Hamming window: (a) – un-
compressed sine test signal, (b) – G.723.1 compressed sine test sig-
nal, (c) – uncompressed speech test signal, (d) – G.723.1 compressed

speech test signal

Fig. 3. MSE(α) for Keys kernel and Hann window: (a) – uncom-
pressed sine test signal, (b) – G.723.1 compressed sine test signal,
(c) – uncompressed speech test signal, (d) – G.723.1 compressed

speech test signal

Fig. 4. MSE(α) for Keys kernel and Blackman window: (a) –
uncompressed sine test signal, (b) – G.723.1 compressed sine test
signal, c) uncompressed speech test signal, (d) – G.723.1 compressed

speech test signal

Fig. 5. MSE(α) for Keys kernel and Rectangular window: (a)
– uncompressed sine test signal, (b) – G.723.1 compressed sine
test signal, (c) – uncompressed speech test signal, (d) – G.723.1

compressed speech test signal

Fig. 6. MSE(α) for Keys kernel and Kaiser window: (a) – uncom-
pressed sine test signal, (b) – G.723.1 compressed sine test signal,
(c) – uncompressed speech test signal, (d) – G.723.1 compressed

speech test signal

Fig. 7. MSE(α) for Keys kernel and Triangular window: (a) –
uncompressed sine test signal, (b) – G.723.1 compressed sine test
signal, (c) – uncompressed speech test signal, (d) – G.723.1 com-

pressed speech test signal
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2.3 Test Signals

PCC algorithm of the fundamental frequency estima-
tion will be applied to:

a) simulation sine test signal, and

b) speech test signal.

Simulation sine signal for testing of PCC algorithm is
defined in [15]

s(t) =

K
∑

i=1

M
∑

g=0

ai sin
(

2πi
(

f0 + g
fs

NM

)

t + θi

)

, (13)

where f0 is fundamental frequency, θi and ai are phase
and amplitude of the i -th harmonic, respectively, K is
the number of harmonics, M is the number of points be-
tween the two samples in spectrum where PCC interpo-
lation is being made. The speech test signal is obtained
by recording of a speaker in the real acoustic ambient.
For further comparative analysis by interpolation (Mat-
lab function interp 1) it is suitable for the fundamental
frequency of the speech test signal and the one of the sine
test signal to be equal.

PCC algorithm will be applied to:

a) uncoded simulation sine and speech test signals, and

b) by G.723.1 algorithm coded and decoded sine and
speech test signals.

3 EXPERIMENTAL RESULTS

AND COMPARISON

3.1 Testing Parameters

In the simulation process f0 and θi are random vari-
ables with uniform distribution in the range
[G2(97.99 Hz), G5(783.99 Hz)] and [0, 2π] . Signal fre-
quency of sampling is fS = 8 kHz and the length of
window is N = 256, which assures the analysis of sub-
sequences that last 32 ms. The results presented further
in this paper relate to f0 = 125–140.625 Hz (frequencies
between the eighth and ninth DFT components). Num-
ber of frequencies in the specified range for which the
estimation is done is M = 100. The sine test signal is
with K = 10 harmonics. All further analyzes will relate
to a) Hamming, b) Hamming, c) Blackman, d) Rectan-
gular, e) Kaiser and f) Triangular window.

3.2 Experimental Results

3.2.1 Keys Kernel

Applying an algorithm for determination of parame-
ters of Keys interpolation kernel some diagrams are drawn
MSE(α), the minimum value MSEKmin determined, and
on the base of it the optimum value of Keys kernel
αopt determined for: a) – Hamming (Fig. 2), b) – Hann
(Fig. 3), c) – Blackman (Fig. 4), d) – Rectangular (Fig. 5),

e) – Kaiser (Fig. 6) and f) – Triangular (Fig. 7) win-
dow functions. Values MSEKmin and αopt are presented
in Tab. 1 (uncoded sine test signal MSEKmin , G.723.1
coded sine test signal MSEKGmin ) and Tab. 2 (speech
test signal MSEKSPmin , G.723.1 coded sine test signal
MSEKGSPmin ).

On the base of the results presented in Tabs. 1 and 2
it is obvious that:

a) – at speech test signal the greatest precision of fun-
damental frequency estimation is when Blackman win-
dow (MSEKmin = 0.000423) is applied. At G.723.1 coded
sine test signal the greatest precision of estimation is
in Rectangular (MSEKGmin = 0.3855) window. When
G.723.1 coding is applied precision in fundamental fre-
quency estimation is lowered for MSEKGmin/MSEKmin =
0.3855/0.00619 = 62.277 times.

b) at speech test signal the greatest precision is in
triangular window (MSEKSPmin = 0.0277). At G.723.1
coded speech signal the greatest precision is in rect-
angular window (MSEKGSPmin = 0.6752). When cod-
ing is applied precision in fundamental frequency es-
timation is lowered for MSEKGSPmin/MSEKSPmin =
0.6752/0.0277 = 24.375 times.

c) at coded speech signal in relation to coded sine sig-
nal non precision in fundamental frequency estimation is
greater for MSEKGSPmin/MSEKGmin = 0.6752/0.3855 =
1.75 times.

3.2.2 Greville Kernel

Applying algorithm for determination of Greville inter-
polation kernel some diagrams MSE(α) are drawn, min-
imum value MSEGmin determined, and on the base of it
optimum value of Greville kernel parameters αopt deter-
mined for: a) – Hamming (Fig. 8), b) – Hann (Fig. 9),
c) – Blackman (Fig. 10), d) – Rectangular (Fig. 11), e)
– Kaiser (Fig. 12) and f) – Triangular window. Values
MSEmin and αopt are presented in Tab. 3 (uncoded sine
test signal MSEGmin , coded sine test signal MSEGGmin )
and Tab. 4 (speech test signal MSEGSPmin , coded speech
test signal MSEGGSPmin ).

On the base of the results presented in Tabs 3 and 4
it is obvious that:

a) – at sine test signal the greatest precision of funda-
mental frequency estimation is when Blackman
(MSEGmin = 0.0002441) window is applied. At G.723.1
coded sine test signal the greatest precision of estima-
tion is in rectangular window (MSEGGmin = 0.3274).
When coding is applied, precision of fundamental fre-
quency estimation is lowered for MSEGGmin/MSEGmin =
0.3274/0.0002441 = 1341.25 times.

b) at speech test signal the greatest precision is in tri-
angular window (MSEGSPmin = 0.0255). At coded speech
signal the greatest precision is in rectangular window
(MSEGGSPmin = 0.5178). When coding is applied, pre-
cision of the fundamental frequency estimation is low-
ered for MSEGGSPmin/MSEGSPmin = 0.5178/0.0255 =
20.3 times.
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Fig. 8. MSE(α) for Greville kernel and Hamming window: a) –
uncompressed sine test signal, b) – G.723.1 compressed sine test
signal, c) – uncompressed speech test signal, d) – G.723.1 com-

pressed speech test signal

Fig. 9. MSE(α) for Greville kernel and Han window: (a) – uncom-
pressed sine test signal, (b) – G.723.1 compressed sine test signal,
(c) – uncompressed speech test signal, (d) – G.723.1 compressed

speech test signal

Fig. 10. MSE(α) for Greville kernel and Blackman window: (a)
– uncompressed sine test signal, (b) – G.723.1 compressed sine
test signal, (c) – uncompressed speech test signal, (d) – G.723.1

compressed speech test signal

Fig. 11. MSE(α) for Greville kernel and Rectangular window: (a)
– uncompressed sine test signal, (b) – G.723.1 compressed sine
test signal, (c) – uncompressed speech test signal, (d) – G.723.1

compressed speech test signal

Fig. 12. MSE(α) for Greville kernel and Kaiser window: (a) –
uncompressed sine test signal, (b) – G.723.1 compressed sine test
signal, (c) – uncompressed speech test signal, (d) – G.723.1 com-

pressed speech test signal

Fig. 13. MSE(α) for Greville kernel and Triangular window: (a)
– uncompressed sine test signal, (b) – G.723.1 compressed sine
test signal, (c) – uncompressed speech test signal, (d) – G.723.1

compressed speech test signal
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Fig. 14. Sine test signal without compression with the application
of Blackman window: (a) – MSE(α, β) for G2P PCC interpolation,
(b) – positions of min(MSE(αopt, βopt)) in plane (αβ) for Greville

(point A) and G2P PCC (point B) interpolation

Fig. 15. Sine test signal with G.723.1 compression with the appli-
cation of Rectangular window: (a) – MSE(α, β) for the application
of G2P PCC interpolation, (b) – Positions of min(MSE(αopt, βopt))

in plane (αβ) for Greville (point A) and G2P PCC (point B) in-
terpolation

Fig. 16. Speech test signal without compression with the applica-
tion of Kaiser window: (a) – MSE(α, β) for G2P PCC interpolation,
(b) – positions of min(MSE(αopt, βopt)) in plane (αβ) for Greville

(point A) and G2P PCC (point B) interpolation

Fig. 17. Speech test signal with G.723.1 compression with the ap-
plication of Rectangular window: (a) – MSE(α, β) for the applica-
tion of G2P PCC interpolation, (b) – Positions of min(MSE(αopt,

βopt)) in plane (αβ) for Greville (point A) and G2P PCC (point

B) interpolation

c) at coded speech signal in relation to coded sine
signal non-precision of the fundamental frequency is
greater for MSEGGSPmin/MSEGGmin = 0.5178/0.3274 =
1.58 times.

3.2.3 G2P Kernel

For window (Blackman, Kaiser, Rectangular) which
showed the best results with Greville kernel, an anal-
ysis was performed by means of G2P kernel. Three-
dimensional MSE(α, β) graphics are drawn (Figs. 14.a,
15.a, 16.a, and 17.a), the shift of minimum MSEmin in
(α, β) level determined, and αopt and βopt values deter-
mined and presented in Tab. 5.

In Figures 14.b, 15.b, 16.b, and 17.b the positions of
MSEmin = MSE(αopt, βopt) minimum in (α, β) plane
for Greville (point A) and G2P (point B) interpolation
kernel, are shown. Vector AB shows the position change
of minimum (MSE(αopt, βopt )).

On the base of the results presented in Tab. 5 it is
obvious that:

a) – at sine test signal the greatest precision of the
fundamental frequency estimation is when Blackman
(MSEG2Pmin = 0.00014) window is applied. At G.723.1
coded sine test signal the greatest precision of estimation

is in rectangular window (MSEG2PGmin = 0.175). When
coding is applied, precision of fundamental frequency
estimation is lowered for MSEG2PGmin/MSEG2Pmin =
0.175/0.00014 = 12500 times.

b) at speech test signal the greatest precision is in
Kaiser window (MSEG2PSPmin = 0.0112). At G.723.1
coded speech signal the greatest precision is in rectan-
gular window (MSEG2PGSPmin = 0.2898). When G.723.1
coding is applied, precision of fundamental frequency es-
timation is lowered for MSEG2PGSPmin/MSEG2PSPmin =
0.2898/0.0112 = 25.875 times.

c) at G.723.1 coded speech signal in relation to G.723.1
coded sine signal, non-precision of fundamental frequency
estimation is greater for MSEG2PGSPmin/MSEG2PGmin =
0.2898/0.175 = 1.656 times.

4 COMPARATIVE ANALYSIS

Comparative precision analysis of the estimated fun-
damental frequency of the sine test signal and the speech
test signal, without and with G.723.1 compression will
be performed on the base of the minimal values of
MSE. The minimal value of MSE is determined on the
base of a diagram in the Figs. 2–7 (Keys), Figs. 8–13
(Greville) and Figs. 14–17 (G2P) and presented in the
Table 1 (MSEKmin,MSEKGmin ), Table 2 (MSEKSPmin ,
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Table 1. Minimum MSE and αopt for sine test signal (Keys kernel)

Uncoded signal Signal coded by
G.723.1 algorithm

αopt MSEKmin αopt MSEPKGmin

Ham −1 0.0098 −0.875 0.4203
Hann −0.880 0.000619 −0.820 0.4170
Black −0.800 0.000423 −0.760 0.4137
Rect. −2.680 0.1767 −1.740 0.3855
Kais. −1.140 0.0066 −1 0.3887
Trian. −1.010 0.0036 −0.970 0.3982

Table 2. Minimum MSE and αopt for speech test signal (Keys

kernel)

Uncoded signal Signal coded by
G.723.1 algorithm

αopt MSEKSPmin αopt MSEKGSPmin

Ham −0.995 0.0310 −1.020 0.9351
Hann −0.880 0.0349 −0.920 1.0523
Black. −0.800 0.0358 −0.840 1.0213
Rect. −2.400 0.4323 −2.100 0.6752
Kais. −1.080 0.0339 −1.150 0.9390
Trian. −1.030 0.0277 −1.040 0.9865

Table 3. Minimum MSE and αopt for speech test signal (Keys

kernel)

Uncoded signal Signal coded by
G.723.1 algorithm

αopt MSEGmin αopt MSEGGmin

Ham. −0.560 0.0089 −0.4800 0.3841
Hann −0.450 0.0006573 −0.3900 0.3969
Black. −0.410 0.0002441 −0.3650 0.3938
Rect. −2.300 0.1472 −1.3000 0.3274
Kais. −0.660 0.0059 −0.5400 0.3598
Trian. −0.575 0.0007793 −0.5000 0.3659

Table 4. Minimum MSE and αopt for speech test signal (Greville

kernel)

Uncoded signal Signal coded by
G.723.1 algorithm

αopt MSEGSPmin αopt MSEGGSPmin

Hamm −0.560 0.0310 −0.6400 0.7983
Hann −0.450 0.0363 −0.5300 0.9201
Black. −0.410 0.0344 −0.5100 0.9209
Rect. −2.100 0.2016 −1.7000 0.5178
Kais. −0.660 0.0255 −0.7800 0.7787
Trian. −0.575 0.0256 −0.6750 0.8011

MSEKGSPmin ), Table 3 (MSEGmin , MSEGGmin ), Table 4

(MSEGSPmin , MSEGGSPmin ) and Table 5 (MSEG2Pmin ,

MSEG2PGmin , MSEG2PSP , MSEG2PGSPmin ) respectively.

Comparing the values MSEmin from Tabs. 1–5 it can

be concluded that:

(a) – the optimum choice for sine test signal is Black-
man window for all interpolation kernels. G2P interpola-
tion kernel, which generates 66.91 % less than Keys and
42.65 % less than Greville kernel, showed the best results.

(b) – the optimum choice for speech test signal is G2P
kernel with Kaiser window, which generates 59.57 % less
than Keys kernel (Triangular window) and 56.08

c) the optimum choice for sine test signal coded by
G.723.1 algorithm is rectangular window for all interpo-
lation kernels. G2P interpolation kernel, which generates
54.61 % less than Keys and 46.55 % less than Greville
kernel, showed the best results.

d) the optimum choice for speech test signal coded by
G.723.1 algorithm is rectangular window for all interpo-
lation kernels. G2P interpolation kernel, which generates
57.21 % less than Keys and 44.04 % less than Greville
kernel, showed the best results.

e) comparing MSE for G2P kernel for uncoded speech
test signal (Kaiser window, MSEG2PSPmin = 0.0112)
and G.723.1 coded speech signal (Rectangular window,
MSEG2PGSPmin = 0.2898) in relation to MSEG2PGSPmin/
MSEG2PSPmin = 0.2898/0.0112 = 25.875 has been ob-
tained.

In accordance to the derived conclusion, the applica-
tion of the algorithm for further processing of G.723.1
speech signal with algorithms based on the estimated fun-
damental frequency (automatic verification of a speaker,
recognition of the speech, etc) would not bring satisfac-
tory results.

5 CONCLUSION

This paper presented the analysis of the fundamental
frequency estimation results of the speech signal com-
pressed by G.723.1 algorithm which has been intensively
used in VoIP services. The estimation of the fundamen-
tal frequency has been made by Peaking Peaks algorithm
with implemented PCC interpolation. Experiments have
been performed with Keys, Greville and Greville two-
parametric G2P kernels. In order to minimize MSE some
windows have been implemented. The detailed analy-
sis has shown that the optimal choice is Greville two-
parametric kernel and the Rectangular window imple-
mented in PCC algorithm. In relation to Keys and Gre-
ville kernels, Greville two-parametric kernel generates
54.61 % and 46.55 % less MSE, respectively. Comparing
the obtained results to the results of the estimation of
the fundamental frequency in the speech signal that is
not modeled by G.723.1 method, a relation of minimal
MSEs 25.875 has been obtained. This result leads to the
conclusion that, although by the subjective tests (ACR-
MOS tests) extremely good results have been obtained
(3.4–3.8), in further processing of the signal based on the
estimated fundamental frequency (automatic verification
of the speaker, recognition of the speech, etc), the ob-
tained results would not be satisfactory in regard to the
reliability and precision.
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Table 5. Minimum MSE, αopt and βopt (G2P kernel)

αopt βopt MSEG2Pmin

Sin Uncoded signal −0.328 0.0438 MSEG2Pmin

test Blackman win. −0.328 0.0438 0.00014

signal G.723.1 coded −0.95 0.1838 MSEG2PGmin

Rectang. win. −0.95 0.1838 0.1750
Speech Uncoded signal −0.35 0.1375 MSEG2PSPmin

test Kaiser win. −0.35 0.1375 0.0112

signal G.723.1 coded −1.08 0.2600 MSEG2PGSPmin

Rectang. win. −1.08 0.2600 0.2898
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