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HYBRID PID CONTROL ALGORITHMS
FOR NONLINEAR PROCESS CONTROL

Albena Taneva — Michail Petrov — Ivan Ganchev
∗

This paper presents modifications of the classical PID control algorithm, implemented by an Adaptive Neuro-Fuzzy
Architecture (ANFA). The main goal here is to design a fuzzy PID controller with a flexible structure, adaptive tuning of
its parameters and algorithm modifications, which leads to improvement of the system performance. Thus the controlling
process and system are prevented from the undesired and non expected changes of the system input signals. The antecedent
part of the applied fuzzy rules contains a linear function, similar to the modified discrete equation of the corresponding
conventional PID controller. The simulations demonstrate satisfactory results of these performances and implementations
applied to a nonlinear plant.
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1 INTRODUCTION

Fuzzy logic controller (FLC) has emerged as one of the
most active and useful research areas in fuzzy control the-
ory. Therefore fuzzy logic controllers have been success-
fully applied in the control of various physical processes.
On the other hand the best-known industrial process con-
troller is the Proportional-Integral-Derivative (PID) con-
troller because of its simple structure and robust per-
formance in a wide range of operating conditions. The
similarity between FLC and PID controllers and their
improvement is still investigated. This paper is devoted
to this problem and describes some of the design aspects
of the fuzzy PID controllers with application to nonlinear
plants.

Three types of the structure of the FLC have been
studied: the first one is the well known fuzzy PD con-
troller, which generates a control action (u) from the
system error (e) and the change in the error (∆e), the
second one is the fuzzy PI controller, which generates an
incremental control action (∆e) from the error (e) and
the change in the error (∆e). The fuzzy PD controller is a
positioning type controller, and the fuzzy PI controller is
a velocity type controller. The third one is the fuzzy PID
controller, which generates a control action (u) from the
error (e), the change in the error (∆e) and the sum of
errors (δe) or the fuzzy PID controller, which generates
an incremental control action (∆u) from the error (e),
the change in the error (∆e) and the acceleration error

(∆2e). The first type of a fuzzy PID controller is a posi-
tioning type controller and the second type is a velocity
type controller. The difficulties of both types fuzzy PID
controllers are that they need three inputs, which will
expand the rule-base significantly and will make the de-
sign procedure more complicated. Therefore such types of

fuzzy PID controllers are rarely used. The fuzzy PD and
fuzzy PI controllers based on Mamdani’s [1] fuzzy sys-

tem are simpler and more applicable. The fuzzy PI type
control is known to be more practical than PD type be-

cause it is difficult for the PD type to remove the system
steady state error. On the other hand the PI type control

is known to give poor performance in the system tran-

sient response for higher order process due to the inter-
nal integration operation. Therefore the main goal here

is to design a PID controller with a flexible structure,
adaptive tuning of its parameters and based on certain

modifications, appropriate for nonlinear control systems
with variable system reference input.

2 STRUCTURE OF A CONTROL SYSTEM

WITH AN ANFA PID CONTROLLER

The structure of the control system with the proposed
ANFA PID controller is shown in Fig. 1. An additional

conventional PD controller works in parallel with the
main Fuzzy PID controller, because a learning method

for neural network investigated by Gomi and Kawato [2]

is used. They have proposed learning schemes using feed-
back error learning for a neural network model applied to

an adaptive nonlinear feedback controller. In these learn-
ing schemes, a conventional feedback controller (CFC) is

used both as an ordinary feedback controller to guarantee
global asymptotic stability in a particular space and as an

inverse reference model of the response of the controlled
plant [11]. This approach is implemented here in order to

tune the fuzzy neural network.

The traditional FLC works with input signals of the

system error e and the change ∆e of the error. The

∗ Technical University of Sofia, branch Plovdiv, 25 Tsanko Dyustabanov, 4000 Plovdiv, Bulgaria, altaneva@tu-plovdiv.bg, mpetrov@tu-
plovdiv.bg, ganchev@tu-plovdiv.bg

DOI: 10.2478/v10187-011-0024-0, ISSN 1335-3632 c© 2011 FEI STU



148 A. Taneva — M. Petrov — I. Ganchev: HYBRID PID CONTROL ALGORITHMS FOR NONLINEAR PROCESS CONTROL

I0(A)

uF

Fuzzyfier

Fuzzyfier

Fuzzyfier

Sugeno

fuzzy

inference

Plant

uPD

u

y(k)

ANFA PID

or D
2
e(k)

De(k)

e(k)

or de(k)

r(k)

CFC

-

Fig. 1. The structure of the control system with the proposed modified ANFA PID controller

system error is defined as the difference between the set
point r(k) and the plant output y(k) at the moment k

e(k) = r(k) − y(k) (1)

and the change of the error ∆e at the moment k for the
traditional PID control algorithm is calculated as follows:

∆e = e(k) − e(k − 1) . (2)

For a modified PID control algorithm, where the set point
could be excluded from the derivative part, calculation
can be done with the system output signal

∆m(k) = −
(

y(k) − y(k − 1)
)

. (2a)

The sum of the errors δe or the acceleration error ∆2e
can be used as a third input signal for the ANFA PID.
They are calculated according to the equations:

δe(k) =

k
∑

i=1

e(i) (3)

∆2e(k) = e(k) − 2e(k − 1) + e(k − 2) . (4)

For the modified algorithm the acceleration error ∆2em

is calculated as follows

∆2em(k) = −y(k) + 2y(k − 1) − (k − 2) . (4a)

The first one (3) is attached to the positioning type FPID
controller and the second one (4) is attached to the ve-
locity type FPID controller as it is explained bellow. It
is known from the digital control theory, that the most
frequently used digital PID control algorithm can be de-
scribed with the difference equations as follows [3]

• positioning type PID controller: standard and modi-
fied form

u(k) = kpe(k) + kiδe(k) + kd∆e(k) , (5)

u(k) = kpe(k) + kiδe(k) + kd∆em(k) . (5a)

• velocity type PID controller: standard and modified
form

∆u(k) = kp∆e(k) + kie(k) + kd∆
2e(k) , (6)

∆u(k) = kp∆em(k) + kie(k) + kd∆
2em(k) . (6a)

where ki = kp
Tk

Ti
, kd = kp

Tk

Ti
, Tk is the sample time

of the discrete system, Ti is the integral time constant
of the conventional controller, Td is the differential time
constant, kp is the proportional gain, u(k) is the out-
put control signal and ∆u(k) is the incremental control
signal. The final control action for the controller (6, 6a)
can be calculated according to the previous value of the
control output u(k − 1) as follows

u(k) = u(k − 1) + ∆u(k) . (6b)

The Takagi-Sugeno-Kang (TSK) fuzzy rules into the
ANFA PID controller can be composed in the general-
ized form of if-then’ composition with a premise and an
antecedent part to describe the control policy. The rule
base comprises a collection of N rules, where the upper
index (n) represents the rule number, e , ∆e , ∆2e , δe
are the input variables. The modified forms and their
fuzzy-neural implementation are considered in this work.
The main advantage of these forms is the absence of the
so called “differential kick” and reaching“bumpless” be-
havior of the controller output. Their application is ap-
propriate for systems with frequent and big changes of
the system set point value r(k). This way the similarity
between the equations of the conventional digital PID
controller (5), (6) and the Sugeno output functions fu

into (7) and (8) could be found:

• positioning type ANFA PID controller: standard and
modified form

R(n) if e is E
(n)
i and ∆e is dR

(n)
i and δe is δE

(n)
i then

f (n)
u = k(n)

p e(k) + k
(n)
i δe(k) + k

(n)
d ∆e(k) + k

(n)
0 , (7)

R(n) if e is E
(n)
i and∆e is dE

(n)
i andδe is δE

(n)
i then

f (n)
u = k(n)

p e(k) + k
(n)
i δe(k) + k

(n)
d ∆em(k) + k

(n)
0 . (7a)
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Fig. 2. Overall scheme of the plant

• velocity type ANFA PID controller: standard and
modified form

R(n) if e is E
(n)
i and ∆e is dE

(n)
i and ∆2 is d2E

(n)
i then

f (n)
u = k(n)

p ∆e(k) + k
(n)
i e(k) + k

(n)
d ∆2e(k) + k

(n)
0 , (8)

R(n) if e is E
(n)
i and∆e is dE

(n)
i and∆2e is ∆2E

(n)
i then

f (n)
u = k(n)

p ∆em(k) + k
(n)
i e(k) + k

(n)
d ∆2em(k) + k

(n)
0 . (8a)

In this case, the ANFA PID controller can be consid-
ered as a collection of many local PID controllers, which
are represented by the (TSK) functions into the different
fuzzy rules and this way can approximate the nonlinear
characteristic of the controlled plant.

The fuzzy implication, connected to the rules, is real-
ized by means of the composition [4]

µ(n)
u = µ(n)

u ∗ µ
(n)
∆e ∗ µ

(n)
δe , (9)

µ(n)
u = µ(n)

e ∗ µ
(n)
∆e ∗ µ

(n)
∆2e

(10)

where µe , µ∆e , µδe and µ∆2e specify the membership
degrees upon the fired fuzzy sets of the input signals

into the (n)th fuzzy rule. For a discrete universe with
m quantization levels in the fuzzy output, the control
action uF is expressed as a weighted average of the (TSK)
output functions fu and their membership degrees µu of
the quantization levels

uF =

∑q

i=1 f
(i)
u µ

(i)
u

∑q

i=1 µ
(i)
u

or uF =

q
∑

i=1

fuiµui . (11)

For simplicity the number of the rule is represented with
upper index (i).

3 THE STRUCTURE OF THE FUZZY

NEURAL PID CONTROLLER

A connectionist model of the FPID controller imple-
mented as a fuzzy neural network — ANFA is presented.
The neural network structure corresponds to the fuzzy
controller structure (Fig. 1) almost one to one. The input
nodes in the first layer are X1, X2 and X3 connected
to the fuzzification µ-modules in the second layer. The
R -modules from third layer interpret the rules and give
their output to the µu -modules in the fourth layer re-
lated to the control action uF that is formed by the out-
put U -node in the fifth layer. The nodes in layer two are
term nodes, which act as membership functions to repre-
sent the terms of the respective linguistic variables. This
structure enables adaptation of the controller properties
according to the changing process parameters and envi-
ronment.

Every node in the second layer performs a simple mem-
bership function. For example a triangular function is
used in this case with expressions

µji =







x−aij

bji−aji
, if aij ≤ x ≤ bji ,

cji−x

cji−bji
, if bji ≤ x ≤ cji

(12)

where xi is the input from the ith input node (X1, X2

or X3), µij is the membership function of the jth term

of the ith input linguistic variable; bij , aij , and cij are
respectively the center (or mean), the left distance (or
variance) and the right distance of the triangular function

of the jth term of the ith input linguistic variable. Hence
the unity link ‘weight’ in layer 2 µij can represent up
to three parameters – - bij , aij , cij . The parameters in
this layer are adjustable and are referred to as premise
parameters. The links in layer 3 are used to perform
precondition matching of the fuzzy logic rules. Hence,
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the rule nodes R(n) should perform collection of the
membership degrees of the fired fuzzy sets. The links
in layer 4 should perform the fuzzy product’ operation
according to (9) or (10) and to integrate the fired rules
which have the same consequent. The single node in layer
5 computes the overall output signal as the summation
of all incoming signals.

IU =

m
∑

i=1

fuiµui . (13)

This node transmits the decision signal out of the network
and in this way acts as TSK output defuzzyfication

uF =

∑m
i=1 fuiµui

∑m
i=1 µui

or uF =

m
∑

i=1

fuiµui (14)

where µui is the normalized value of µui . The link weight
µi presents the coefficients (kp , ki , kd , ko ) into the TSK
output function (7) or (8). Parameters βi in this layer
are adjustable and will be referred to as consequent pa-
rameters. The premise and the consequent adjustable pa-
rameters are taken into the learning algorithm, described
bellow.

3.1. Learning algorithm RTGA for the fuzzy-

neural implemented PID controller

The described fuzzy neural PID controller implements
the basic control function in the system, and the con-
ventional feedback PD controller is used for the learning
algorithm (Fig. 1). The control action is obtained as a
sum of the output signal from the ANFA PID controller
uF and the output signal from the conventional PD con-
troller uPD , working in parallel

u = uPD + uF . (15)

The learning algorithm is based on instant minimization
of an error measurement function, which is defined as

E = ε2/2 (16)

where ε is calculated as a difference ε = u − uF = uPD ,
in which u denotes desired control action and uF is
calculated by the neural network.

This algorithm performs two-steps gradient learning
procedure — Recurrent Two-steps Gradient Algorithm —
RTGA. Assuming that βij is an ith adjustable parameter
(eg the constant kp , ki , kd , or ko ) in the TSK output

function fu (7) or (8) into the jth activated rule, which
is represented as a connection for the output neuron in
the fifth layer, the general parameter learning rule used
is [5, 10]

βi(k + 1) = βi(k)+ η
(

−
∂E

∂βi

)

, i = 0, 1, 2, 3; j = 1, 2, . . . , q

(17)
where η is the learning rate, and the derivative of the
error is calculated by partial derivatives.

After calculating the partial derivatives, the final

recurrent equation for each adjustable parameter βi i

(kp, ki, kd, ko) in the fifth layer is:

• positioning type ANFA PID controller ((2a) is used for

modified form)

kp(k + 1) = kp(k) + ηuPDµuie(k)ki(k + 1)

= ki(k) + ηuPDµuiδe(k) ,

kd(k + 1) = kd(k) + ηuPDµui∆e(k) ,

ko(k + 1) = ko(k) + ηuPDµui .

(18)

• velocity type ANFA PID controller ((4a) is used for

modified form)):

kp(k + 1) = kp(k) + ηuPDµui∆e(k) ,

ki(k + 1) = ki(k) + ηuPDµuie(k) ,

kd(k + 1) = kd(k) + ηuPDµui∆
2e(k) ,

ko(k + 1) = ko(k) + ηuPDµui .

(19)

The next two layers: forth and third, do not contain

adjustable parameters. Therefore the output error E

can be propagated back directly to the second layer,

with adjustable parameters αij . The error E is prop-

agated through the links composed by corresponding

membership degrees µui − µij from the fifth layer to

the second layer. Hence, the learning rule for the sec-

ond group of adjustable parameters in the second layer

can be taken from

αi(k + 1) = αi(k) + η
(

−
∂E

∂αij

)

. (20)

After calculating the partial derivatives, the final re-

current equations for each adjustable premise parame-
ter for the ith input and its jth fuzzy set in the second

layer is

αji(k + 1) = αji(k) + ηuPD

fui − uF
∑m

i=1 µui

∂µji

∂αji

. (21)

4.1 Plant description

The investigations were carried out by simulations of the

Modified ANFA PID algorithms in MATLAB/Simulink

environment. A simplified nonlinear model of three tanks

is used. Two of them are used for level control and third

one is used as a reservoir. The plant has two control inputs

corresponding to the two pumps. The process variables

are the levels in each tank. The model can be configured

as MIMO or cascade plant model. Hence the level in a

tank can be controlled through level in the other tank.

Simulations were performed in cases with different refer-

ences and with added disturbances in the plant.
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4.2 Simulation results

In this section the simulation results obtained using

the developed algorithms are presented. Figure 3 shows

the transient responses with ANFA and modified ANFA

controllers. It was obtained different responses. The main

advantage can be noted when the reference change kicks

up the output signal, shown in Fig. 4. With modified

ANFA algorithm the controller signal remains accord-

ingly to the common system behavior. In case of added

disturbances in the system it was found out that the mod-
ified ANFA controller produces the appropriate control

signal, hence the plant output closely follows the refer-

ence signal, Fig. 5.

Figure 6 shows the transient responses with distur-

bance and with uncertain references. The obtained result
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are satisfied and proved the advantage of the proposed
modification. Transient responses with ANFA PID and
conventional PID control for the comparison and in the
same cases are presented, Fig. 7. The final Fig. 8 shows
only the control signals of the three algorithms: Modified
ANFA, ANFA and conventional PID control signals. It is
evident that the first one has better behavior, hence it is
appropriate to be used when the reference is changed in
a supervisory control system.

5 CONCLUSIONS

The fuzzy PID controllers are very useful when the
controlled plant has got nonlinearities or changeable pa-
rameters. In this paper an improvement of neuro-fuzzy
PID algorithms for a nonlinear plant is presented. The
ANFA PID controllers are developed as three-term fuzzy
controllers using the system error, the first and the sec-
ond derivatives of the error (or accumulative error). The
antecedent part of the applied TSK fuzzy rules contains a
linear function, similar to the discrete equation of the dig-
ital PID controller. The modified forms and their fuzzy-
neural implementation are considered in this work. The
known modification of the conventional PID control law
(about the differential part) is implemented with ANFA
structure. Hence the fuzzy rules contain the modified
equations as antecedent parts. The main goal was to in-
vestigate the efficiency of the modified neuro-fuzzy algo-
rithms. The main advantage of these forms is the absence
of the so called “differential kick” and reaching “bump-
less” behaviour of the controller output. Their application
is appropriate for systems with frequent and big changes
of the system set point value. The computer simulations
were carried out with Simulink model of cascaded tanks
with changeable parameters. The results verified the va-
lidity and the robust performance of the system with the
proposed modified fuzzy controller.
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