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STABLE MODEL PREDICTIVE CONTROL
DESIGN: SEQUENTIAL APPROACH

Vojtech Veselý
∗

The paper addresses the problem of output feedback stable model predictive control design with guaranteed cost. The
proposed design method pursues the idea of sequential design for N prediction horizon using one-step ahead model predictive
control design approach. Numerical examples are given to illustrate the effectiveness of the proposed method.
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1 INTRODUCTION

Model predictive control (MPC) has attracted notable
attention in control of dynamic systems. The idea of MPC
can be summarized as follows [1–6]:

– prediction of the future behavior of the process state/
output over the finite time horizon;

– computation of the future input signals online at each
step by minimizing a cost function under inequality
constraints on the manipulated (control) and/or con-
trolled variables;

– application on the controlled plant of the first vector
control variable u(t) and repetition of the previous
step with new measured input/state/output variables.

Availability of the plant model is a necessary condi-
tion for the development of the predictive control [7]. The
main criticism related to MPC is that due to the finite
prediction horizon the algorithm in its original formula-
tion does not guarantee closed-loop stability [8, 9, 12]. Ex-
cellent survey about stability, robustness properties and
optimality of MPC is given in [10].

In this paper new design method is proposed that pur-
sue the idea of sequential design for N prediction horizon
using one-step ahead model predictive control design ap-
proach. The first modification of proposed sequential de-
sign method is based on classical LQ state feedback and
solution of Diophantine equation. In the second modifi-
cation of proposed method the Lyapunov function with
guaranteed cost is adapted to obtain output feedback pre-
dictive control for N prediction horizon model with con-
straints on input variables. For both design approaches
the bilinear matrix inequality (BMI) is adapted to obtain
a feasible solution with respect to corresponding output
feedback gain matrices.

The paper is organized as follows. The next Section
gives problem formulation and some preliminaries about
a predictive output/state model. In Section 3, two modi-
fication of sequential design methods for output feedback
predictive control for N prediction horizon are proposed.
The obtained methods are tested on three examples. At
the end of the paper the conclusions are drawn.

Hereafter, the following notational conventions will be
adopted: given a symmetric matrix P = P⊤ ∈ Rn×n ,
the inequality P > 0 denotes matrix positive definite-
ness. Given two symmetric matrices P , Q , the inequality
P > Q indicates that P − Q > 0. The notation x(t + k)
will be used to define at time t k -steps ahead prediction
of a system variable x from time t onwards under spec-
ified initial state and input scenario. That is estimated
predictive output at time k = 1, 2, . . . y(t + k|t) will
be denoted as y(t + k). I denotes the identity matrix of
corresponding dimensions.

2 PRELIMINARIES AND

PROBLEM FORMULATION

Consider a time invariant linear discrete-time system

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

where x(t) ∈ Rn , u(t) ∈ Rm , y(t) ∈ Rl are state, control
and output variables of the system, respectively; A, B, C

are known matrices of corresponding dimensions. The
problem studied in this paper is to design model predic-
tive control for the plant with following control algorithm

u(t) = F11y(t) + F12y(t + 1) (2)

and model predictive control for given prediction horizon
N

u(t + k − 1) =

k+1
∑

i=1

Fkiy(t + i − 1) , k = 2, 3, . . . , N (3)

where Fki ∈ Rm×l , k = 1, 2, . . . , N , i = 1, 2, . . . , k + l is
output (state) feedback gain matrix to be determined so
that the stability of closed-loop MPC system is guaran-
teed and the below given cost function (6) is minimized
with respect to the constraint.
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3 MODEL PREDICTIVE CONTROL DESIGN

Consider the system (1) with control algorithm (2).
For the plant control algorithm we obtain

u(t) = F11Cx(t) + F12Cx(t + 1) → u(t) =

(I − F12CB)−1(F11C + F12CA)x(t) = K1x(t) (4)

where K1 = (I − F12CB)−1(F11C + F12CA), I is the
identity matrix of corresponding dimensions. For (4) the
closed-loop system is as follows

x(t + 1) = (A + BK1)x(t) = D1x(t) . (5)

The control objective is usually to steer the state to the
origin or to an equilibrium state xr for which the output
yr = Cxr = w , where w is the constant reference. A
suitable change of coordinates reduces the second prob-
lem to the first one which we consider in the sequel. To
determine the state feedback matrix Kr of system (5) the
following cost function is defined as follows

J1 = F1

(

x(N1)
)

+J1(t) (6)

where F1

(

x(N1)
)

is a given terminal constraint at time

N1 and

J1(t) =

N1−1
∑

t=t0

x⊤(t)Q1x(t) + u⊤(t)R1u(t) ,

Q1 = Q⊤

1 ≥ 0 ∈ Rn×n, R1 = R⊤

1 ≥ 0 ∈ Rm×m

are corresponding weighting matrices.

Definition. Consider the system (1). If there exists a
control law u(t)∗ and a positive scalar J∗

1 such that the
closed-loop system (5) is stable and the value of closed-
loop cost function (6) satisfies J1 ≤ J∗

1 then J∗
1 is said

to be guaranteed cost and u(t)∗ is said to be guaranteed
cost control law for the system (1).

Consider that the constraints on the maximum value
of state denoted by maxt

(

x(t)⊤x(t)
)

, and control input

denoted by maxt

(

u(t)⊤u(t)
)

are known

maxt

(

u(t)⊤u(t)
)

maxt

(

x(t)⊤x(t)
) = ρ . (7)

Then for the worst case the following linear matrix in-
equality (LMI) constraint can be formulated

[

ρI K⊤
1

K1 I

]

≥ 0 . (8)

Inequality (8), cost function (6) and system (1) are the
basis for the calculation of the gain matrix K1 . Another
approach to introduce input constraints the reader can
find in [13]. There are several approaches to calculate K1 .

If (8) is missing the classical LQ design approach can

be used, otherwise if N1 → ∞ , F
(

x(N1)
)

= 0 the bilin-
ear matrix inequality can be formulated and solved using
the linearization approach [5]; the linear matrix inequal-
ity is obtained with respect to matrix K1 . If different
terminal constraints F1

(

x(N1)
)

are chosen then different
approaches for calculation of K1 are used, for more detail
see [4].

Consider that the state feedback gain matrix K1 is
known. From (4) the following Diophantine equation with
respect to output feedback gain matrices F11 , F12 are
obtained

K1 = F11C + F12CD1 . (9)

Note that if (A, B) is controllable then for the given
matrices Q1, R1 a state feedback gain matrix K1 exists
guaranteeing minimal cost (6) and closed-loop stability of
(5). Moreover if the solution of the Diophantine equation
(9) with respect to matrices F11 , F12 exists, the proposed
one-step ahead predictive control algorithm (4) guarantee
for closed-loop system with output feedback the same
properties as for the system obtained by state feedback
with the gain matrix K1 . Note that according to the
receding horizon strategy only the input variable u(t) is
applied to the plant as a manipulated variable. The one-
step ahead design procedure is completed.

Consider the case N = 2. Model for prediction of state
and output variable and predictive control algorithm are
respectively

x(t + 2) = Ax(+1) + Bu(t + 1) ,

u(t + 1) = F21y(t) + F22y(t + 1) + F23y(t + 2) .

For the manipulated variable u(t + 1) after some manip-
ulation we obtain

u(t + 1) = K2x(t)

where

K2 =
(

I − F23CB
)−1(

F21C + F22CD1 + F23CAD1

)

.

The closed-loop system

x(t + 2) = (AD1 + BK2)x(t) = D2x(t) (10)

for N = 2 is stable if and only if the matrices D1 , D2

are stable. The matrix D1 is already stable therefore
the matrix D2 has to be stable to guarantee closed-loop
stability. The matrix K2 can be calculated using the same
approach as for the matrix K1 . The control objective for
calculation of K2 can be defined as follows

J2 = F2

(

x(N1)
)

+J2(t)
where

J2(t) =

N1−1
∑

t=t0

x⊤(t)Q2x(t) + u⊤(t + 1)R2u(t + 1) .

Note that the control input u(t + 1) is applied to the
predictive model (10) for the calculation of the future
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output y(t + 2). It is not necessary to use the constraint
(8) for K2 calculation.

Sequentially, for N = k step prediction one obtains
the following closed-loop system

x(t + k) = ADk−1 + BKk)x(t) = Dkx(t) (11)

where D0 = I , Dk = ADk−1 + BKk , k = 1, 2, . . . , N .

The Diophantine equation for calculation of output
feedback gain matrices (3) is

Kk =

k
∑

j=1

FkjCDj−1 + Fkk+1CDk . (12)

Cost function is given as follows

Jk = Fk

(

x(Nk)
)

+Jk(t) ,

Jk(t) =

Nk−1
∑

t=t0

x(t)Qkx(t) + u(t + k − 1)⊤Rku(t + k − 1) .

(13)
The obtained results are summarized in the following
theorem.

Theorem 1. Consider the closed-loop system (11), con-
trol algorithm (2) and (3) and prediction horizon N . The
closed-loop system is stable if the following conditions
hold:

– the couple (ADk−1, B) for k = 1, 2, . . . , N is control-
lable, ie there exists a matrix Kk which ensures the
closed-loop matrix stability and guaranteed cost

– there exists the solution of the Diophantine equation
(12) with respect to output feedback matrices Fkj ,
k = 1, 2, . . . , N , j = 1, 2, . . . , k + 1 . Note that some
matrices Fkj , k = 1, 2, . . . , N , j ≤ k− 1 can be equal
to zero.

To avoid solution of the Diophantine equation (12)
the second modification of design procedure has been
proposed. Introduce the following predicted control al-
gorithm

u(t + k − 1) = Fkk(t + k − 1) + Fkk+1y(t + k) ,

k = 1, 2, . . . , N . (14)

R e m a r k s .

1. Control algorithm for k = N is u(t + N − 1) =
FNNy(t + N − 1).

2. If one want to use the control horizon [1] Nu < N ,
the control algorithm u(t + k − 1) = 0, Kk = 0,
FNu+1Nu+1

= 0, FNu+1Nu+2
= 0 for k > Nu .

For k step prediction the closed-loop system (11) can
be rewritten as follows

x(t + k) = (A + BFkkC)Dk−1x(t) + BFkk+1Cx(t + k) .

The aim of the proposed second predictive control design
procedure is to design gain matrices Fkk , Fkk+1 , k =

1, 2, . . . , N such that the closed-loop system (15) is stable

with guaranteed cost when Fk

(

x(Nk)
)

= 0, Nk → ∞ .

The closed-loop system (15) on the k step ahead model
predictive control will be stable if and only if the first
difference of Ljapunov function Vk(t) = x(t)⊤Pkx(t),

Pk = P⊤

k > 0 on the solution of (15) will be negative
definite (semidefinite), that is

∆Vk(t) = Vk(t + k) − Vk(t) ≤ 0 , k = 1, 2, . . . , N . (15)

Closed-loop system (15) will be stable with guaranteed
cost iff the following inequality holds

Bek(t) = ∆Vk(t)+

x⊤(t)Qkx(t) + u(t + k − 1)⊤Rku(t + k − 1) < 0 . (16)

The following theorem gives conditions to design the
above-mentioned output feedback matrices.

Theorem 2. The closed-loop system (15) is stable with
guaranteed cost if and only if for k = 1, 2, . . . , N there
exist matrices Nk1 ∈ Rn×n , Nk2 ∈ Rn×n , Fkk , Fkk+1

and a positive definite matrix Pk = P⊤

k ∈ Rn×n such
that the following bilinear matrix inequality holds

[

Gk11 Gk12

G⊤

k12
Gk22

]

≤ 0 (17)

where

Kk11 = N⊤

k1Mck + M⊤

ckNk1 + C⊤F⊤

kk+1RkFkk+1C + Pk ,

Gk22 = Qk − Pk + D⊤

k−1C
⊤F⊤

kkRkFkkCDk−1+

N⊤

k2AckDk−1 + D⊤

k−1A
⊤

ckNk2 ,

G⊤

k12 = D⊤

k−1C
⊤F⊤

kkRkFkk+1C + D⊤

k−1A
⊤

ckNk1 + N⊤

k2Mck

for k = 1, 2, . . . , N , where

Mck = BFkk+1C − I , Ack = A + BFkkC ,

Kk = (I − Fkk+1CB)−1(FkkC + Fkk+1CA)Dk−1 .

P r o o f . Sufficiency. From (15) one obtains

x(t + k) = −(Mck)−1AckDk−1x(t) .

Because the matrix

U⊤

k =
[

(−(Mck)−1AckDk−1)
⊤I

]

has full row rank multiplying from left and right side of
(17)

U⊤

k (eq(17))Uk

and obtained results multiplying from left by x(t)⊤ and
right by x(t), due to (18) the inequality (16) is obtained,
which proves the sufficiency.
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Necessity. Suppose that for k -step ahead model predic-
tive control there exists such matrix Pk = P⊤

k > 0 that
(17) holds. Necessity, there exists a scalar α > 0 such
that for the first difference of Ljapunov function

V ⊤

k PkVk − Pk < −αV ⊤

k Vk (18)

where Vk = −M−1

ck AckDk−1 . Equation (18) can be
rewritten as follows

V ⊤

k (Pk + αI)Vk − Pk < 0 .

Using Schur complement formula

[

Pk −V ⊤

k (Pk + αI)
−(Pk + αI)Vk −(Pk + αI)

]

< 0 (19)

taking

Nk1 = −
(

M−1

ck

)⊤(

Pk + 0.5αI
)

,

N⊤

k2 = −D⊤

k−1A
⊤

ck

(

M−1

ck

)⊤
M−1

ck α0.5

one obtains

− Vk(Pk + αI) = D⊤

k−1A
⊤

ckNk1 + A⊤

k2Mck

− Pk = −Pk + N⊤

k2A
⊤

k2AckDk−1

+ D⊤

k−1A
⊤

ckNk2 + αV ⊤

k Vk − (Pk + αI) = 2M⊤

ckNk1 + Pk .

For α → 0 one has got the first difference of Ljapunov
function given by (17) (case Rk = Qk = 0). If one
substitute to second part of (16) instead of u(t + k − 1)
(14), rewrite the obtained result to matrix form and take
sum it with (19) the matrix inequality of (17) is obtained,
which proves the necessity of theorem. It completes the
proof.

If there exists a feasible solution to (17) with respect
to Fkk , Fkk+1 , Nk1 , Nk2 , k = 1, 2, . . . , N and a positive
definite matrix Pk , then the designed model predictive
algorithm (14) ensures closed-loop stability and guaran-
teed cost.

Note that for N = 1, polytopic system A =
∑S

i=1
Aiαi

and parameter dependent Lyapunov function P =
∑S

i=1
Piαi the feasible solution of (17) guarantees the

robustness properties of closed-loop onestep ahead pre-
dictive control (for more detail see [7, 10, 14]).

4 EXAMPLES

The first example serves as a benchmark. The contin-
uous-time model of the double integrator has been con-
verted to a discrete-time using the sampling period 0.1 s,
the model turns to (1) with

A =

[

2 −0.5
2 0.0

]

, B =

[

0.125
0.0

]

, C = [ 0.08 0.4 ] .

Eigenvalues of the matrix A are

eig(A) = {1, 1} .

For prediction horizon N = 3 and guaranteed cost spec-
ified by the following weighting matrices

Q1 = 5I R1 = I , Q2 = 10I , R2 = I , Q3 = I , R3 = I

the following results are obtained:
Gain matrices for the state feedback:

K1 = [ 8.2747 −2.727 ] ,

K2 = [ 2.2454 −1.0169 ] ,

K3 = [ 0.1934 −0.3645 ] .

Solution of the Diophantine equation (9) for output feed-
back gain matrices are
For plant control u(t)

F11 = −6.49985 , F12 = 10.0251

and for output predictions u(t + 1)

F21 = −1.8969 , F22 = 1.1255 , F23 = 1.7097 ,

u(t + 2) : F31 = −0.8204 , F32 = −0.0608 ,

F33 = 0.2495 , F34 = 1.20981× 10−7.

For N = 3 the closed-loop eigenvalues are

eig(CLOSED–LOOP) = −0.035± 0.3329i .

The model for the second example is given as follows

A =











0.6 0.0097 0.0143 0 0
0.012 0.9754 0.0049 0 0

−0.0047 0.01 0.46 0 0
0.0488 0.0002 0.0004 1 0
−0.0001 0.0003 0.0488 0 1











,

B =







0.0425 0.0053
0.0052 0.01
0.0024 0.0474

0 0.0012






, C =







1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1






.

For the case of one-step ahead model predictive control
N = 1 and guaranteed cost given by the matrices Q1 =
51, R1 = I the following results are obtained.
State feedback matrix obtained by LQ method

K1 =

[

0.4642 0.4052 0.0091 2.1971 −0.154
0.0536 0.6707 0.3362 0.1361 2.1947

]

Solution of the Diophantine equation for output feedback:

F11 =

[

4.4269 6.514 1.5663 −1.3642
6.6108 11.0884 −0.9085 0.1941

]
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F12 =

[

−7.0219 −14.42 −0.1983 −0.3201
−11.6202 −238367 −0.3284 −0.5298

]

Eigenvalues of the closed-loop system are

eig(CLOSED–LOOP) = {0.5909, 0.4541, 0.9627, 0.9905} .

It is interesting to note that for the prediction horizon
N = 3 the closed-loop eigenvalues have improved as fol-
lows

eig(CLOSED–LOOP) =

{0.208, 0.0941, 0.91, 0.9768, 0.981} .

In the third example we have taken the same system as
in the second one. The task is to design two PS (PI) model
predictive decentralized controllers for plant control input
u(t) for the prediction horizon N = 5. The cost function
is given by following matrices

Q1 = Q2 = Q3 = I , R1 = R2 = R3 = I ,

Q4 = Q5 = 0.5I , R4 = R5 = I .

The obtained decentralized output feedback gain matrices
(solution of (17)) for control algorithm

u(t) = F11y(t) + F12y(t + 1)

are

F11 =

[

−0.2512 0 −0.4353 0
0 −0.269 0 −0.3435

]

where proportional and integral gains of the first decen-
tralized controller are

K1p = 0.2512 , K1i = 0.4353

and controller parameters for the second input are

K2p = 0.269 , K2i = 0.3435 .

Because the output y(t + 1) is obtained from model pre-
diction there is no need to use decentralized control struc-
ture for output feedback gain matrix F12 .

F12

[

−0.2253 −0.1198 −0.5957 0.1095
−0.2024 −0.2268 −0.0547 −0.6476

]

and finally for input of model prediction (assuming that
y(t + 5) is available)

u(t + 4) = F55y(t + 4) + F56y(t + 5)

the following gain matrices are obtained

F55 =

[

−0.0046 −0.0046 −0.0874 0.0099
−0.0102 −0.0054 −0.0044 −0.0841

]

F56 =

[

−0.00437 −0.006 −0.1067 0.0024
−0.0134 −0.0479 −0.0141 −0.1051

]

.

Eigenvalues of the closed-loop system for model predictive
control with N = 5 are as follows

eig(CLOSED–LOOP) =

{0.074, 0.0196, 0.8864, 0.9838, 0.9883} .

The above examples show that the proposed sequen-
tial design model predictive control procedure guarantees
closed-loop stability and guaranteed cost.

5 CONCLUSION

The paper addresses the problem to develop original
approach to sequential design of model predictive control.
Sequential design consists of N steps. At first, one-step
ahead model predictive control is designed using any of
the two modified design techniques proposed in the paper.
Repeating the one-step ahead design procedure N times,
one obtains the N step ahead prediction horizon. The
proposed design techniques guarantee closed-loop stabil-
ity and guaranteed cost by minimizing in each step the
given cost function. The results of the design procedure
are the output feedback gain matrices for model predic-
tive control and for real plant control with input u(t).
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