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AN EVOLUTIONARY PROGRAMMING BASED TABU
SEARCH METHOD FOR UNIT COMMITMENT

PROBLEM WITH COOLING–BANKING CONSTRAINTS

C. Christober Asir Rajan
∗

This paper presents a new approach to solve the short-term unit commitment problem using An Evolutionary Program-

ming Based tabu search method with cooling and banking constraints. Numerical results are shown comparing the cost
solutions and computation time obtained by using the evolutionary programming method and other conventional methods
like dynamic programming, lagrangian relaxation.
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1 INTRODUCTION

Unit commitment is the problem of selecting the gen-
erating units to be put into service during a schedul-
ing period and for how long. The committed units must
meet the system load and reserve requirements at mini-
mum operating cost, subject to a variety of constraints.
Unit commitment is an important optimization task in
the daily operating planning of power system. The solu-
tion of unit commitment problem (UCP) is really a com-
plex optimization problem. It can be considered as two
linked optimization problems, the first is a combinatorial
problem of generating units, which could be a very huge
number. TS is a powerful optimization procedure that
has been successfully applied to a number of combina-
torial optimization problems. It has the ability to avoid
entrapment in local minima. TS employ a flexible mem-
ory system (in contrast to ‘memory less’ systems, such
as simulated annealing and genetic algorithm, and rigid
memory system such as in branch-and-bound). Specific
attention is given to the short-term memory component
of TS, which has provided solutions superior to the best
obtained with other methods for a variety of problems.

Research endeavours, therefore, have been focused on;
efficient, near-optimal UC algorithms, which can be ap-
plied to large-scale, power systems and have reasonable
storage and computation time requirements. A survey of
existing literature [1–26] on the problem reveals that var-
ious numerical optimisation techniques have been em-
ployed to approach the complicated unit commitment
problem. More specifically, these are the dynamic pro-
gramming method (DP), the mixed integer programming
method (MIP), the lagrangian relaxation method (LR),
the branch and bound method (BB), the expert sys-
tem (ES), the fuzzy theorem method (FT), the hop field
method (H), the simulated annealing method (SA), the
tabu search (TS), the genetic algorithm (GA), the arti-
ficial neural network (ANN), the evolutionary program-
ming (EP) and so on. The major limitations of the numer-
ical techniques are the problem dimensions, large compu-
tational time and complexity in programming.

The DP method [1–2], [13] is flexible but the disad-
vantage is the “curse of dimensionality”, which results
it may leads to more mathematical complexity and in-
crease in computation time if the constraints are taken in
to consideration. The MIP methods [3–4] for solving the
unit commitment problems fail when the number of units
increases because they require a large memory and suffer
from great computational delay. The LR approach [5–
8] to solve the short-term UC Problems was found that
it provides faster solution but it will fail to obtain so-
lution feasibility and solution quality problems and be-
comes complex if the number of units increased. The BB
method [9] employs a linear function to represent fuel cost
and start-up cost and obtains a lower and upper bounds.
The difficulty of this method is the exponential growth
in the execution time for systems of a practical size. An
ES algorithm [10], [13] rectifies the complexity in calcula-
tions and saving in computation time. But it will face the
problem if the new schedule is differing from schedule in
database. In the FT method [11], [13], [24] using fuzzy set
solves the forecasted load schedules error but it will also
suffer from complexity. The H neural network technique
[12] considers more constraints but it may suffer from
numerical convergence due to its training process. SA
[14–17], [23–24] is a powerful, general-purpose stochas-
tic optimisation technique, which can theoretically con-
verge asymptotically to a global optimum solution with
probability one. But it will take much time to reach the
near-global minimum. The TS [18–20], [23] is an iterative
improvement procedure that starts from some initial fea-
sible solution and attempts to determine a better solution
in the manner of a greatest-decent algorithm. However,
TS is characterized by an ability to escape local optima
by using a short-term memory of recent solutions.

GA [13], [21–24] is a general-purpose stochastic and
parallel search method based on the mechanics of natural
selection and natural genetics. It is a search method to
have potential of obtaining near-global minimum. And it
has the capability to obtain the accurate results within
short time and the constraints are included easily. The
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ANN [12], [28] has the advantages of giving good solution
quality and rapid convergence. And this method can ac-
commodate more complicated unit-wise constraints and
are claimed for numerical convergence and solution qual-
ity problems. The solution processing in each method is
very unique. The EP [25–26] has the advantages of good
convergent property and a significant speedup over tra-
ditional GA’s and can obtain high quality solutions. The
“curse of dimensionality” is surmounted, and the compu-
tational burden is almost linear with the problem scale.

From the literature review, it has been observed that
there exists a need for evolving simple and effective meth-
ods, for obtaining an optimal solution for the UCP. Hence,
in this paper, an attempt has been made to couple EP
with TS for meeting these requirements of the UCP,
which eliminates the above-mentioned drawbacks. In case
of TS, the demand is taken as control parameter. Hence
the quality of solution is improved. The algorithm is based
on the annealing neural network. Classical optimization
methods are a direct means for solving this problem. EP
seems to be promising and is still evolving. EP has the
great advantage of good convergent property and, hence,
the computation time is considerably reduced. The EP
combines good solution quality for TS with rapid con-
vergence for EP. The EP Based TS (EPTS) is used to
find the short- term thermal unit commitment. By doing
so, it can help to find the optimum solution rapidly and
efficiently.

EP is capable of determining the global or near global
solution. It is based on the basic genetic operation of hu-
man chromosomes. It operates with the stochastic me-
chanics, which combine offspring creation based on the
performance of current trail solutions and competition
and selection based on the successive generations, form
a considerably robust scheme for large-scale real-valued
combinational optimization. In this proposed work, the
parents are obtained from a pre-defined set of solution’s
ie each and every solution is adjusted to meet the require-
ments. And the selection process is done using Evolution-
ary Strategy [8–9].

2 PROBLEM FORMULATION

The objective is to find the generation scheduling such
that the total operating cost can be minimized, when sub-
jected to a variety of constraints [27]. In the UCP under
consideration, an interesting solution would be minimiz-
ing the total operating cost of the generating units with
several constraints being satisfied. The major component
of the operating cost, for thermal and nuclear units, is the
power production cost of the committed units and this is
given in a quadratic form

Fit(Pit) = AiP
2
itBiPit + Ci Rs/hr , (1)

where, Ai, Bi, Ci – are the cost function parameters of
unit i , (Rs/MW2hr, Rs/MWhr, Rs/hr), Fit(Pit) – is the
production cost of unit i at a time t (Rs/hr), Pit – is
the output power from unit i at time t (MW).

The start up cost depends upon the down time of the
unit, which can vary from a maximum value, when the
unit i is started from cold state, to a much smaller value,
if the unit i has been turned off recently. The start up
cost calculation depends upon the treatment method for
the thermal unit during down time periods. The start-up
cost Sit , is a function of the down time of unit i given as

Sit = Soi[1−Di exp(−Toffi/Tdowni)] + Ei (2)

where, Soi – is the unit i cold start-up cost (Rs), Di, Ei

– are the start-up cost coefficients for unit i .

The overall objective function of the UCP is then

FT =
T∑

t=1

N∑
i=1

(
Fit(Pit)Uit + SitVit

)
(3)

where, Uit - is the unit i status at hour t =1 (if unit is
ON) =0 (if unit is OFF), Vit – is the unit i start up/shut
down status at hour t =1 if the unit is started at hour
t and 0 otherwise, FT – is the total operating cost over
the schedule horizon (Rs/hr), Sit – is the start up cost
of unit i at hour t (Rs).

2.1 Constraints

Depending on the nature of the power system under
study, the UCP is subject to many constraints, the main
being the load balance constraints and the spinning re-
serve constraints. The other constraints include the ther-
mal constraints, fuel constraints, security constraints etc
[27].

2.1.1 Load Balance Constraints

The real power generated must be sufficient enough
to meet the load demand and must satisfy the following
factors

N∑
i=1

PitUit = PDt . (4)

where, PDt – is the system peak demand at hour t
(MW), N – is the number of available generating units,
U(0, 1) – is the uniform distribution with parameters 0
and 1, UD(a, b) – is the discrete uniform distribution
with parameters a and b .

2.1.2 Spinning Reserve Constraints

The spinning reserve is the total amount of real power
generation available from all synchronized units minus
the present load plus the losses. The reserve is considered
to be a pre specified amount or a given percentage of
the forecasted peak demand. It must be sufficient enough
to meet the loss of the most heavily loaded unit in the
system. This has to satisfy the equation given in (5).

N∑
i=1

P max
i

Uit ≥ (PDt +Rt) ; 1 ≤ t ≤ T , (5)

where, P maxi – is the maximum generation limit of unit
i , Rt – is the spinning reserve at time t (MW), T – is
the scheduled time horizon (24 hr).
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Fig. 1. Flowchart of Tabu Search Algorithm

2.1.3 Thermal Constraints

The temperature and pressure of the thermal units
vary very gradually and the units must be synchronized
before they are brought online. A time period of even
1 hour is considered as the minimum down time of the
units. There are certain factors, which govern the thermal
constraints, like minimum up time, minimum down time
and crew constraints.

a) Minimum up time

If the units have already been shut down, there will
be a minimum time before they can be restarted and the
constraint is given in (6).

Toni = Tupi , (6)

where Toni – is the duration for which unit i is contin-
uously ON (hr), Tupi – is the unit i minimum up time
(hr).

b) Minimum down time

If all the units are running already, they cannot be
shut down simultaneously and the constraint is given in
(7).

Toffi ≥ Tdowni , (7)

where, Tdowni – unit i minimum down time (hr), Toffi –
duration for which unit i is continuouslyOFF (hr).

2.1.4 Must Run Units

Generally in a power system, some of the units are
given a must run status in order to provide voltage sup-
port for the network.

3 TABU SEARCH

3.1 Overview

In solving the UCP, two types of variables need to be
determined. The unit’s status variables U and V , which
are integer variables and the units, output power vari-
ables P that are continuous variables. The problem can
then be decomposed into two sub problems, a combinato-
rial problem in U and V and a non-linear optimization
problem in P . TS are used to solve the combinatorial op-
timization and the non-linear optimization is solved via
a quadratic programming routine [18]. The flowchart for
TS is shown in Fig. 1.

The proposed algorithm contains three major steps:

• First, generating randomly feasible trail solutions.

• Second, calculating the objective function of the given
solution by solving the EDP.

• Third, applying the TS procedures to accept or reject
the solution in hand.

3.2 Tabu Search General Algorithm

Step 0: Assume that the fuel costs to be fixed for each
hour and all the generators share the loads equally.

Step 1: By optimum allocation find the initial feasible
solution (Ui, Vi).

Step 2: Demand is taken as the control parameter.

Step 3: Generate the trial solution.

Step 4: Calculate the total operating cost, Ft , as the
summation of running cost and Start up-shut down cost.

Step 5: Tabulate the fuel cost for each unit for every hour.

3.3 Generating Trial Solution

The neighbors should be randomly generated, feasible,
and span as much as possible the problem solution space.
Because of the constraints in the UCP this is not a simple
matter. The most difficult constraints to satisfy are the
minimum up/down times. The implementation of new
rules to obtain randomly feasible solutions faster are done
by the rules is described in [18].

3.3 Generating an Initial Solution

The TS algorithm requires a starting feasible schedule,
which satisfies all the system and units constraints. This
schedule is randomly generated. The algorithm given in
[18] is used for finding this starting solution.

3.4 Operating Cost Calculation

Once a trail solution is obtained, the corresponding
total operating cost is determined. Since the production
cost is a quadratic function, the EDP is solved using a
quadratic programming routine. The start-up cost is then
calculated for the given schedule.
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3.5 Generating an Initial Solution

The TS algorithm requires a starting feasible schedule,
which satisfies all the system and units constraints. This
schedule is randomly generated. The algorithm given in
[18] is used for finding this starting solution.

3.6 Operating Cost Calculation

Once a trail solution is obtained, the corresponding
total operating cost is determined. Since the production
cost is a quadratic function, the EDP is solved using a
quadratic programming routine. The start-up cost is then
calculated for the given schedule.

3.7 Stopping Criteria

There may be several stopping criteria for the search.
For this implementation, the search is stopped if the fol-
lowing conditions are satisfied:

• The load balance constraints are satisfied.

• The spinning reserve constraints are satisfied.

4 EVOLUTIONARY PROGRAMMING

4.1 Introduction

EP is a mutation-based evolutionary algorithm ap-
plied to discrete search spaces. David Fogel [29] extended
the initial work of his father Larry Fogel [31] for appli-
cations involving real-parameter optimization problems.
Real-parameter EP is similar in principle to evolution
strategy (ES), in that normally distributed mutations are
performed in both algorithms. Both algorithms encode
mutation strength (or variance of the normal distribu-
tion) for each decision variable and a self-adapting rule is
used to update the mutation strengths. Several variants
of EP have been suggested [29].

4.2 Evolutionary Strategies

For the case of Evolutionary strategies D.B. Fogel re-
marks “evolution can be categorized by several levels
of hierarchy: the gene, the chromosome, the individual,
the species, and the ecosystem.” Thus, while Genetic Al-
gorithms stress models of genetic operators, Evolution-
ary Strategies emphasize mutational transformation that
maintains behavioral linkage between each parent and
its offspring at the level of the individual. Evolutionary
Strategies are a joint development of Bienert, Rechen-
berg, and Schwefel. The first applications were experi-
mental and addressed some optimization problems in hy-
drodynamics.

4.3 EP General Algorithm

Evolutionary programming [25–26], [29–31] is con-
ducted as a sequence of operations and is given below.

1. The initial population is determined by setting si =
Si ∼ U(ak, bk)

k i = 1, . . . ,m , where Si is a random vec-

tor, si is the outcome of the random vector, U(ak, bk)
k

denotes a uniform distribution ranging over [ak, bk] in
each of k dimensions, and m is the number of parents.

2. Each si , i = 1, . . . ,m , is assigned a fitness score
ϑ(si) = G

(
F (si), vi

)
, where F maps si 7→ R and de-

notes the true fitness of si , vi , represents random al-
teration in the instantiation of si , random variation im-
posed on the evaluation of F (si), or satisfies another

relation si , and G
(
F (si), vi

)
describes the fitness score

to be assigned. In general, the functions F and G can
be as complex as required. For example, F may be a
function not only of a particular si , but also of other
members of the population, conditioned on a particular
si .

3. Each si , i = 1, . . . ,m , is altered and assigned to si+m

such that si+m = si,j +N(0, βjϑ(si)+zj), j = 1, . . . , k .
N(0, βjϑ(si) + zj) represents a Gaussian random vari-

able with mean µ and variance σ2 , βj is a constant
of proportionality to scale ϑ(si), and zj represents an
offset to guarantee a minimum amount of variance,

4. Each si+m , i = 1, . . . ,m , is assigned a fitness score

ϑ(si+m) = G
(
F (si+m), vi+m

)
5. For each si , i = 1, . . . , 2m , a value wi is assigned
according to

wi =
c∑

t=1

w∗
t , w∗

t =

{
1 if ϑ(si) ≤ ϑ(st);

0, otherwise,

where p = [2mu1 + 1], p ̸= i , [x] denotes the greatest
integer less than or equal to x , c is the number of
competitions, and u1 ∼ U(0, 1).

6. The solutions si , i = 1 . . . , 2m , are ranked in descend-
ing order of their corresponding value wi [with prefer-
ence to their actual scores ϑ(si) if there are more than
m solutions attaining a value of c ]. The first m so-
lutions are transcribed along with their corresponding
values ϑ(si) to be the basis of the next generation.

7. The process proceeds to step 3, unless the available
execution time is exhausted or an acceptable solution
has been discovered.

4.4 Evolutionary Programming for UCP

1. Initialize the parent vector p = [p1, p2, . . . , pn] , i =
1, 2, . . . , Np such that each element in the vector is deter-
mined by pj ∼ random(pj min, pj max), j = 1, 2, . . . , N ,
with one generator as dependent generator.

2. Initialize the parent vector p = [p1, p2, . . . , pn] , i =
1, 2, . . . , Np such that each element in the vector is deter-
mined by pj ∼ random(pj min, pj max), j = 1, 2, . . . , N ,
with one generator as dependent generator.

3. Calculate the overall objective function if the UCP is
given in equation (3) using the trail vector pi and find
the minimum of FTi .

4. Initialize the parent vector p = [p1, p2, . . . , pn] , i =
1, 2, . . . , Np such that each element in the vector is deter-
mined by pj ∼ random(pj min, pj max), j = 1, 2, . . . , N ,
with one generator as dependent generator.

5. Calculate the overall objective function if the UCP is
given in equation (3) using the trail vector pi and find
the minimum of FTi .
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Fig. 2. Flowchart for EPTS for UCP

6. Create the offspring trail solution p′i using the following
steps.

(a) Calculate the standard deviation

σj = β
(
FTij/min(FTi)

)(
Pj max − Pj min

)
,

(b) Add a Gaussian random variable N(0, σ2
j ) to all

the state variable of pi , to get p′i .

7. Select the first Np individuals from the total 2Np

individuals of both pi & p′i using the following steps
for next iteration.

(a) Evaluate r = (2Nprandom(0, 1) + 1),

(b) Evaluate each trail vector by Wpi =
∑

(Wx), where
x = 1, 2, . . . , Np , i = 1, 2, . . . , 2Np such that Wx =
1 if FTij/(FTij + FTir) < random(0, 1), otherwise,
Wx = 0.

8. Sort the Wpi in descending order and the first Np

individuals will survive and are transcribed along with
their elements to form the basis of the next generation.

9. The above procedure is repeated from step 2 until a
maximum number of generations Nm is reached.

10. Selection process is done using Evolutionary strategy.

5 EVOLUTIONARY PROGRAMMING
BASED TABU SEARCH FOR UCP

5.1 Tabu Search

1. Take the parent as the initial feasible solution.

2. Take demand as control parameter and generate the
trial solution.

3. Check for the stopping criterion.

4. If false, decrement system peak demand and go to
step 2.

5. If true, generate the optimal solution and calculate the
total operating cost.

5.2 EP based TS

In the TS technique for solving UCP, Initial Operating
Schedule status in terms of maximum real power genera-
tion of each unit is given as input. As we know that TS is
used to improve any given status by avoiding entrapment
in local minima, the offspring obtained from the EP al-
gorithm is given as input to TS and the refined status
is obtained. And Evolutionary Strategy selects the final
status.

1. Get the demand for 24 hours and the number of itera-
tions to be carried out.

2. Generate population of parents (N) by adjusting the
existing solution to the given demand to the form of
state variables.

3. Unit down time makes a random recommitment.

4. Check for constraint in the new schedule by TS. If the
constraints are not met then repair the schedule as given
in Section 5-C.

5.Perform ELD and calculate total production cost for
each parent.

6. Add the Gaussian random variable to each state vari-
able and hence create an offspring. This will further un-
dergo for some repair operations as given in Section 5-D.
Following these, the new schedules are checked in order
to verify that all constraints are met.

7. Improve the status of the evolved offspring and verify
the constraints by TS.

8. Formulate the rank for the entire population.

9. Select the best N number of population for next iter-
ation.

10. Has iteration count reached? If yes go to step 11 else
go to step 2.

11. Select the best population (s) by Evolutionary strat-
egy [29–31].

12. For the units, which are in the off states, calculate the
cost for both cooling and banking.

13. Compare the cooling and banking costs, if banking
cost is lesser than cooling, bank the unit.

14. Print the optimum schedule.

The flow chart for EPTS for UCP is shown in Fig. 2.
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5.3 Repair Mechanism

A repair mechanism to restore the feasibility of the

constraints is applied and described as follows:

• Pick at random one of the OFF units at one of the

violated hours.

• Apply the rules in section 3-C to switch the selected

unit from OFF to ON keeping the feasibility of the

down time constraints.

• Check for the reserve constraints at this hour. Other-

wise repeat the process at the same hour for another

unit.

5.4 Making offspring feasible

While solving the constrained optimization problem,

there are various techniques to repair an infeasible solu-

tion [29–31]. In this paper we have chosen the technique,

which evolve only the feasible solutions. That is the sched-

ule, which satisfies the set of constraints as mentioned ear-

lier. Here, in this paper, the selection routine is involved

as “culling force” to eliminate the feasible schedules. Be-

fore the best solution is selected by evolutionary strategy,

the trail is made to correct the unwanted mutations.

6 NUMERICAL RESULTS

A TPS in India with seven generating units, each with

a capacity of 210 MW, has been considered as a case

study. A time period of 24 hours is considered; the unit

commitment problem is solved for these seven units and

also compared. The required inputs for solving the UCP

are briefed here. The total number of generating units,

the maximum real power generation of each unit and the

cost function parameters of each unit are tabulated for

a day, respectively, as shown in Table 1 and Table 2 for

TPS. The status of unit i at time t and the start-up/shut-

down status obtained are the necessary solution for TS,

EP, EPTS, DP, LR methods for TPS. The comparison of

the total costs and Central Processing unit (CPU) time

is shown in Table 3.

Fig. 3. Total production cost for 3 iterations

Fig. 4. EP average performance from 100 runs

Fig. 5. No. of iterations vs time taken & max. production cost

Figure 3 represents the total production cost obtained
by each parent for three iterations in EP method. Sim-
ilarly, for four and ten iterations are obtained. Figure 4
gives the plot of EP average performance from 100 runs.
Figure 5 gives the plot of No. of iteration versus the time
taken to complete those iterations and the maximum pro-
duction cost obtained under each iteration. From these re-
sults, the EPTS method with cooling-banking constraints
had lesser total cost and took lesser CPU time.

The proposed EPTS approach was compared to the
related methods in the references indented to serve this
purpose, such as the DP with a zoom feature, the SA, and
the GA approaches. Further SA can start with any initial
solution and improves on it to find optimal solution with
a high probability. By means of stochastically searching
multiple points at one time and considering trail solutions
of successive generations, the EPTS approach avoids en-
trapping in local optimum solutions. Also, disadvantages
of huge memory size required by the TS method are elim-
inated. Moreover, intellectual schemes of encoding and
decoding entailed by the GA approach are not needed
in the proposed EPTS approach. The problem of power
unbalance previously existing in the solution of GA is
circumvented as well in this paper. In comparison with
the results produced by the referenced techniques, the
EPTS method obviously displays a satisfactory perfor-
mance with respect to the quality of its evolved solutions
and to its computational requirements.
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Table 1. Daily Generation of Seven Units in MW

Hour Pmax I II III IV V VI VII
1 840 60 80 100 101 149 150 200
2 757 60 0 100 100 147 150 200
3 775 60 0 100 115 150 150 200
4 773 60 0 100 113 150 150 200
5 770 60 0 100 110 150 150 200
6 778 60 0 100 118 150 150 200
7 757 60 0 100 100 147 150 200
8 778 60 0 100 118 150 150 200
9 770 60 0 100 110 150 150 200
10 764 60 0 100 104 150 150 200
11 598 60 0 99 97 142 0 200
12 595 60 0 100 96 139 0 200
13 545 0 0 100 99 146 0 200
14 538 0 0 99 97 142 0 200
15 535 0 0 100 96 139 0 200
16 466 0 0 0 116 150 0 200
17 449 0 0 0 101 148 0 200
18 439 0 0 0 97 142 0 200
19 466 0 0 0 116 150 0 200
20 463 0 0 0 113 150 0 200
21 460 0 0 0 110 150 0 200
22 434 0 0 0 95 139 0 200
23 530 60 0 0 120 150 0 200
24 840 60 80 100 101 149 150 200

Table 2. Generation System Operation Data

Running Cost Start-up Cost

Unit Pmin Pmax Ci Bi Ai Soi Di Ei(Rs)
(MW) (MW) (Rs) (Rs/ (Rs/) (Rs) (Rs) (Rs)

(MWh) MWh2)

1 15 60 750 70 0.255 4250 29.5 10
2 20 80 1250 75 0.198 5050 29.5 10
3 30 100 2000 70 0.198 5700 28.5 10
4 25 120 1600 70 0.191 4700 32.5 9
5 50 150 1450 75 0.106 5650 32 9
6 50 150 4950 65 0.068 14100 37.5 4.5
7 75 200 4100 60 0.074 11350 32 5.5

7 CONCLUSION

This paper presents an EP based TS method with

cooling-banking constraints the unit commitment prob-

lem. In this method, the essential processes simulated in

the procedure are mutation, competition, and selection.

The mutation rate is computed as a function of the ra-

tio of the total cost by the schedule of interest to the

cost of the best schedule in the current population. Com-

petition and selection are applied to select from among

the parents and the offspring, the best solutions to form

the basis of the subsequent generation. In this proposed

work, the parents are obtained from a pre-defined set of

solution’s ie each and every solution is obtained from the

SA method. Then, a random recommitment is carried out

with respect to the unit minimum down times, and the

selection process is done using Evolutionary Strategy.

In comparison with the results produced by the ref-

erenced techniques (EP, DP, LR and TS), the EPTS

method obviously displays a satisfactory performance.

There is no obvious limitation on the size of the prob-

lem that must be addressed, for its data structure is such

that the search space is reduced to a minimum; No re-

laxation of constraints is required; instead, populations

of feasible solutions are produced at each generation and

throughout the evolution process; Multiple near optimal

solutions to the problem involving multiple constraints

and conflicting objectives can be obtained in a reasonable

time with the use of heuristics; It works only with feasi-

ble solutions generated based on heuristics, thus avoiding

the computational burden entailed by the GA methods

which first generate all feasible solutions and then purge

the infeasible ones.

Table 3. Comparisons of cost and CPU time

Total CPU
System Methods Cost Time

(pu) (Sec)

DP 1.00000 130
LR 0.97843 115

7 Unit TS 0.94580 80
(Practical) EP 0.93461 66

EPTS (Without 0.92392 56
Cooling & Banking)
EPTS (With 0.92056 54
Cooling & Banking)

DP 1.00000 260

LR 0.97183 235
10 Unit TS 0.94222 200
(IEEE) EP 0.94071 186

EPTS (Without 0.92090 176
Cooling & Banking)
EPTS (With 0.91710 172
Cooling & Banking)

DP 1.00000 1878

LR 0.96642 1860
26 Unit TS 0.93706 1810
(IEEE) EP 0.92814 1785

EPTS (Without 0.90900 1774
Cooling & Banking)
EPTS (With 0.90600 1766
Cooling & Banking)

DP 1.00000 6865

LR 0.96197 6824
34 Unit TS 0.93300 6800
(IEEE) EP 0.92400 6792

EPTS (Without 0.90718 6772
Cooling & Banking)
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