Ohmic contacts to p-GaN Using Au/Ni-Mg-O Metallization

Open access

Ohmic contacts to p-GaN Using Au/Ni-Mg-O Metallization

Electrical characteristics and elemental depth profiles of ohmic contacts to p-GaN using Au/Ni-Mg-Ox metallization have been investigated. The objective was to examine the possibilities of increasing the charge carrier concentration in the surface region of GaN by adding Mg, thus of a p-type dopant into the Au/NiOx metallization structure. For this purpose, a Ni-Mg-Ox layer with a low concentration of Mg was deposited on p-GaN by dc reactive magnetron sputtering. The top Au layer was deposited in a similar way. The fabricated contact structures were annealed in N2. When the Ni-Mg layer in the Au/Ni-Mg-Ox/p-GaN structure was deposited in an atmosphere with a low concentration of oxygen (0.2 at%), the structure exhibited a low resistance ohmic nature. The contact resistance was lower than in the case of a Au/Ni-Ox/p-GaN structure without the Mg dopant in the metallic layer. An increase in the concentration of oxygen in the working atmosphere resulted in higher values of the contact resistance of the Au/Ni-Mg-Ox/p-GaN structure. In our opinion the ohmic nature of the contact structure is related to the existence of a metal/p-NiO/p-GaN scheme. The measured values of the contact resistance in the Au/Ni-Mg-Ox/p-GaN structure in comparison with the Au/Ni-Ox/p-GaN structure are caused by an increased charge carrier concentration in the surface region of p-GaN, which is a consequence of Mg diffusion from the Ni-Mg-Ox layer.

MURAKAMI, M.—KOIDE, Y.: Critical Reviews in Solid State and Materials Sciences 23 (1998), 1.

HO, J. K.—JONG, C. S.—CHIU, C. C.—HUANG, C. N.—CHEN, C. Y.—SHIH, K. K.: Appl. Phys. Lett. 74 (1999), 1275.

HO, J. K.—JONG, C. S.—CHIU, C. C.—HUANG, C. N.—SHIH, K. K.—CHEN, L. C.—CHEN, F. R.—KAI, J. J.: J. Appl. Phys. 86 (1999), 4491.

MAED, A. T.—KOIDE, Y.—MURAKAMI, M.: Appl. Phys. Lett. 75 (1999), 4145.

MISTELE, D.—FEDLER, F.—KLAUSING, H.—ROTTER, T.—STEMMER, J.—SEMCHINOVA, O. K.—ADERHOLD, J.: J. Cryst. Growth 230 (2001), 564.

CHEN, L. C.—HO, J. K.—JONG, C. S.—CHIU, C. C.—SHIH, K. K.—CHEN, F. R.—KAI, J. J.—CHANG, L.: J. Appl. Phys. 76 (2000)), 3703.

JANG, H. W.—KIM, S. Y.—LEE, J. L.: J. Appl. Phys. 94 (2003), 1748.

EENZEL, R.—FISCHER, G. G.—SCHMID-FETZER, R.: Mater. Sci. Semicond. Process. 0 (2000), 1.

PARK, M. R.—SONG, Y. J.—ANDERSON, W. A.: ETRI Journ. 24 (2002), 349.

NARAYAN, J.—WANG, H.—OH, T. H.—CHOI, H. K.—FAN, J. C. C.: Appl. Phys. Lett. 81 (2002), 3978.

WANG, S. H.—MOHNEY, S. E.—BIRKHAHN, R.: J. Appl. Phys. 91 (2002), 3711.

SONG, J. O.—LEEM, D. S.—SEONG, T. Y.: Appl. Phys. Lett. 83 (2004), 3513.

SONG, J. O.—LEEM, D. S.—SEONG, T. Y.: Appl. Phys. Lett. 84 (2004), 4663.

LIDAY, J.—HOTOVÝ, I.—SITTER, H.—SCHMIDEGG, K. VOGRINČIČ, P.—BONANNI, A.—BREZA, J.—ECKE, G. VÁVRA, I.: Appl. Surf. Sci. 253 (2007), 3174.

Journal of Electrical Engineering

The Journal of Slovak University of Technology

Journal Information


IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 175 83 4
PDF Downloads 73 48 6