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HYBRID EVOLUTIONARY–HEURISTIC ALGORITHM
FOR CAPACITOR BANKS ALLOCATION

Marinko Barukčić — Srete Nikolovski — Franjo Jović
∗

The issue of optimal allocation of capacitor banks concerning power losses minimization in distribution networks are
considered in this paper. This optimization problem has been recently tackled by application of contemporary soft computing
methods such as: genetic algorithms, neural networks, fuzzy logic, simulated annealing, ant colony methods, and hybrid
methods. An evolutionaryheuristic method has been proposed for optimal capacitor allocation in radial distribution networks.
An evolutionary method based on genetic algorithm is developed. The proposed method has a reduced number of parameters
compared to the usual genetic algorithm. A heuristic stage is used for improving the optimal solution given by the evolutionary
stage. A new cost-voltage node index is used in the heuristic stage in order to improve the quality of solution. The efficiency
of the proposed two-stage method has been tested on different test networks. The quality of solution has been verified by
comparison tests with other methods on the same test networks. The proposed method has given significantly better solutions
for time dependent load in the 69-bus network than found in references.
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1 INTRODUCTION

The installation of shunt capacitor banks in radial dis-
tribution networks is widely used for improvement of net-
work voltage profile and decrease of real power losses
in network lines. Decrease of real power losses produces
economical benefit for a distributor. Low values of node
voltage in a network can cause certain problems in net-
work operation. A trade-off between the cost of capacitor
banks installation and the benefit induced from decrease
of losses represents an optimization problem. The solution
to the optimization problem is the optimal allocation of
capacitor banks in distribution networks. The optimal ca-
pacitor allocation determines the size of capacitors to be
installed in certain nodes with the aim of minimizing ac-
tive power losses with minimal capacitor costs. The opti-
mization problem is very difficult to solve. The difficulty
arises from characteristics of the optimization problem.
Both capacitor sizes and capacitor locations are discrete
values. Capacitor banks are installed in certain locations
in a distribution network such as substation, load points
or line poles. The optimization problem has a discrete
character because its variables are discrete. Additionally,
calculation of power flows, power losses and node volt-
ages in a network is done by numerical mathematical
methods. Discrete variables and the numerical calcula-
tion make the optimization problem very complex and
difficult to solve. Furthermore, it is necessary to satisfy
certain network operating conditions. These conditions
are usually voltage limits at network nodes and current
limits of network lines. Other conditions can also be used.
To sum up, the optimization problem can be defined as
nonlinear constrained optimization problem with discrete
variables and non-derivable objective function. Consid-

erable effort has been put into solving the optimization

problem in current literature. In [1] and [2], a review of

optimal capacitor placement methods sorted by methods

and authors is given. Different soft computing methods

such as: genetic algorithms simulated annealing, artifi-

cial neural networks, fuzzy based logic, heuristics based

methods, and tabu search algorithms are widely used for

recent solution of the optimization problem. Some appli-

cations of these methods can be found: in [3] for heuristic

strategies, in [4–9] for genetic algorithms, in [10] for tabu

search algorithms, in [11] for fuzzy logic. Additionally,

synergy of usually two of these methods is often used to

develop hybrid methods. So, in [12–14] combination of

genetic algorithms and fuzzy logic, in [15] combination of

heuristic and tabu search algorithms and in [16] combina-

tion of fuzzy and simulated annealing algorithms can be

found. Definition of procedures inside a given method and

determination of parameter values inside the procedures

are main problems in the application of these methods.

Basic shortcoming of application of these methods to the

given optimization problem is high impact of parameter

values, such as crossover and mutation probabilities for

GA, on the quality of the solution. Therefore there ap-

pears the impossibility of definition of common parameter

values for all topologies and all designs in the application

of these methods to distribution network. The proposed

evolutionary-heuristic method is a trial to overcome this

main and general drawback found in application of refer-

enced methods.

In this paper, a new hybrid method based on an evo-

lutionary method and a heuristic approach is presented.

The method consists of a two-stage algorithm for opti-

mal capacitor banks allocation. The first algorithm stage
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Fig. 1. An example of node numeration, capacitor size coding and
design of individual unit chromosome

is the evolutionary method based on adjustment of a sim-
ple genetic algorithm to the capacitor allocation problem.

The second algorithm stage uses the problem solution
from the first stage as well as a node index to improve
the solution to the problem. The new cost-voltage node
index is presented here. In the paper, a traditional ob-
jective function which considers both decrease of active
power loss and capacitor banks cost is used. The solutions
obtained by the proposed method have been compared
to solutions found in existing references on the same test
type networks.

2 TRADITIONAL OBJECTIVE FUNCTION

The observed optimization problem represents mini-
mization of the total network cost which consists of costs
associated with power peak loss, energy loss and capaci-
tor banks costs. The minimization problem can be math-
ematically formulated as

CNt(QC , LC) = Pl(QC , LC)Cp+ El(Pl)Ce

+ Cct(QC , NC) → min (1)

subject to V ll ≤ Vi(QC , LC) ≤ V ul (2)

where: CNt is total network cost, Pl is real power loss,
Cp is cost coefficient of peak power loss, El is energy loss,
Ce is cost coefficient of energy loss, Cct is total capacitor
banks cost, V ll is lower voltage limit, V ul is upper volt-
age limit, Vi is voltage at node i , QC is reactive power
of capacitor banks, LC is location of capacitor banks,
NC is number of capacitor banks. QC , LC and NC are
variables of objective functions in (1) and (2). Decrease
of the peak power loss increases the network capacity.
Furthermore, decrease of the energy loss decreases the
operational loss of the network. Both of them bring eco-
nomical benefit from the installation of capacitor banks.
However, the economical benefit decreases due to costs
regarding all installed capacitor banks.

In this paper, we use different capacitor costs depend-

ing on the test network. Capacitor costs are given in sec-

tion 5 for each test network. Moreover, cost coefficients

are given in section 5.

3 EVOLUTIONARY METHOD STAGE

An evolutionary method is an iterative procedure

where a population of solutions evolves by transferring

beneficial population features in genetic code to the next

generation. The evolutionary method is based on natural

selection among population units and is usually derived

from a genetic algorithm. The main goals in the devel-

opment of this evolutionary method were both to find

a solution as close as possible to that of the global op-

timum and to simplify the algorithm. The development

of this evolutionary method is based on the adjustment

of the genetic algorithm for optimal capacitor allocation

given in [17]. It is performed by adjusting three elements

of genetic algorithm: individual coding, reproduction and

selection.

3.1 Individual coding

Individual coding is a procedure where variable values

are assigned to a chromosome in the population unit.

In the proposed algorithm, individual coding using an

integer code, as presented in [5], [17] and [18], is used.

This coding is different from the frequently used binary

chromosome coding as in [4], [7, 8], [12] and [14]. There

is also combined coding as shown in [6]. Coding which

is used here is the simplest one. Sizes and locations of a

capacitor are variables in the optimization problem.

The first step includes coding of the capacitor size.

It is done in a very simple way so that each capacitor

size is coded by an integer starting from 1 for the small-

est capacitor size. Then, a unit chromosome structure is

designed. The chromosome structure is designed so that

a chromosome has a specific number of positions. These

positions are chromosome genes.

Chromosome positions correspond to network nodes

which represent possible places for the installation of ca-

pacitors. A very simple rule, which equalizes the numer-

ation of chromosome position and node numeration, is

used here. Consequently, the number of chromosome po-

sitions equals the number of network nodes except for the

referent node. The next step is to assign values to each

position in the chromosome, ie define the value of genes.

It is done by using the following rule: if there is no ca-

pacitor at a network node, the value of the corresponding

chromosome position is 0; if there is a capacitor at a net-

work node, the value of the corresponding chromosome

position is the code of capacitor size. The example of the

described individual coding is shown in Fig. 1.
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Fig. 2. Exploration of the solution space by the reproduction operator, given in right to the graph

3.2 Reproduction in evolutionary method

Crossover and mutation genetic operators are used in
genetic algorithm which can be seen in [5–8], [13] and
[14]. In this evolutionary method, we developed one op-
erator inherently including both processes, ie crossover
and mutation. The basis for its development is the repre-
sentation of solution space of the optimization problem.
Beside this, the idea of development of such reproduc-
tion operator emanates from parthenogenetic reproduc-
tion of descendents in nature. Parthenogenetic reproduc-
tion is inherent in nature mainly for simpler organisms
with shorter DNA chains. Using parthenogenetic repro-
duction by producing descendents from one parent cor-
responds to the proposed way of unit coding and to the
observed problem because of the short chromosome of the
coded unit. A two-dimensional representation of the so-
lution space is developed. This representation is done in
the following way: combinations of capacitor locations are
marked on the horizontal axis, in contrast to the objec-
tive function values which are marked on the vertical axis.
Furthermore, for each combination of capacitor locations
there are more combinations of capacitor sizes. Now, a
corresponding value of the objective function is joined to
a pair of one combination of capacitor location, as well
as to one combination of capacitor sizes. This procedure
can be presented as shown in Fig. 2. It is important to

mention here, that the combination of capacitor sizes de-

pends on both capacitor sizes alone and on the order of

capacitor sizes in combination. The same set of capacitor

sizes has more capacitor orders related to network nodes.

The solution space, shown in Fig. 2, is divided into re-

gions corresponding to the number of capacitors, as well

as into subregions corresponding to the set of capacitor

sizes. The idea about the reproduction operator, which

follows from Fig. 2, is that important genetic materials

of chromosomes are combinations of capacitor locations

and sizes. If a chromosome is fit (value of the objective

function is low) its fitness is partly defined by combina-

tion of locations and partly by combination of capaci-

tor sizes. Therefore, we propose a reproduction operator

which transfers information either about capacitor loca-

tions or capacitor sizes from the parent individual to its

offspring.

We developed a reproduction operator which produces

three sets of offspring individuals from a parent individ-

ual. The reproduction operator produces the first off-

spring set by transferring information about capacitor

locations and sizes from the parent individual to the off-

spring. The order of capacitors is randomly chosen. These

offspring individuals have the same capacitor locations

and sizes as their parent individuals, but different order

of capacitors.
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The second set of offspring individuals is produced by
transferring information about sizes and order of capaci-
tors from the parent to its offspring. Capacitor locations
are chosen at random. This set of offspring individuals
has the same sizes and orders of capacitors as their par-
ent, however, different capacitor locations. The algorithm
explores one subregion in the solution space by using off-
spring individuals defined in these two offspring sets.

The offspring in the third set are made by transferring
information about capacitors locations from the parent
individual to the offspring. Capacitor sizes and order of
capacitors are randomly chosen. These offspring individ-
uals have the same capacitor locations as their parent.
Capacitor sizes and order of sizes are different. The third
offspring set extends the search to more subregions within
a region in the solution space. Figure 2 shows the explo-
ration of the solution space by the proposed reproduction
operator given in the right. Some information about the
offspring chromosomes is transferred from the parent and
some are randomized using the proposed reproduction op-
erator. The reproduction operator has both crossover and
mutation function. Moreover, the reproduction operator
ensures transfer of important information, as well as en-
try of new genes in a population. The advantage of the
proposed reproduction operator with respect to reproduc-
tion in genetic algorithms is that this method requires no
parameters: crossover probability and mutation probabil-
ity. Note that the proposed reproduction operator needs
only one parent in comparison with the parent population
(two parent or more) used in genetic algorithm.

Selection of parent individuals is an important proce-
dure in genetic algorithm. Only one parent is suggested to
be selected in this evolutionary method. This is possible
because the reproduction operator transfers data about
locations, sizes and order of capacitor sizes from the par-
ent to one part of offspring randomizing this data at the
same time for other parts of offspring.

The reproduction operator ensures genetic diversity
even with only one parent also ensuring that the evolu-
tionary method does not get ”stuck” in the local opti-
mum. The proposed selection simplifies the method addi-
tionally. This selection also ensures elitism in evolutionary
method.

The first parent in the evolutionary method is ran-
domly chosen at the method start-up.

3.3 Other elements of evolutionary method

Coding type, selection criteria and method of gener-
ating offspring have great effect on the quality of the so-
lution. Apart from these elements, the way of producing
new population of individuals in the subsequent genera-
tion, stopping criteria as well as the number of individuals
in the population influence the solution quality. The way
of producing a new generation is very simple here. The
new generation is simply generated by adding the parent
to its offspring. The maximum number of generations is
chosen for stopping criteria. The number of generations
and individuals in a population are experimentally de-
fined.

3.4 Defining individual fitness in evolutionary

method

It is clear that an individual is better fitted if the
value of objective function, according to (1), is smaller
for that individual. Besides, the individual needs to sat-
isfy constraint (2). In genetic algorithm, a constraint opti-
mization problem is replaced by a series of unconstrained
problems using the penalty method [19] and defining the
penalty function [4]. By testing the evolutionary method
for different networks, it has been noticed that for some
networks certain individuals have a low objective value
(1) but do not satisfy the voltage constraint (2). On
the other hand, some individuals satisfy the voltage con-
straint but have a considerable higher objective value.
In order to carry out more detailed research into capac-
itor allocations, which significantly reduce active power
loss, execution of evolutionary method without voltage
constraints is proposed. It means that the evolutionary
method provides capacitor allocation, which has a low ob-
jective value, in the process of which it either satisfies or
does not satisfy the voltage constraint. The voltage con-
straint is considered in the heuristic stage of the method.

4 HEURISTIC BASED STAGE

Heuristic stage is developed to improve the quality of
solution provided by the evolutionary method. Capacitor
allocation obtained by the evolutionary method is the
first allocation (start allocation) in the heuristic stage.
The idea is to analyze whether capacitors can be installed
in some nodes with the aim of decreasing the objective
function value with respect to the objective function value
for the start allocation. If installations that decrease the
objective function value exist, a new allocation will be
made. The process is in iterative progress until there are
capacitor installations which decrease the objective func-
tion value. The allocation defined in each iteration is the
start allocation in the subsequent iteration. At this stage,
it is necessary to define a criterion for choosing a new
capacitor installation. We developed a simple criterion
based on the following idea. Two cases are considered.
The first case when capacitor allocation satisfies the volt-
age constrains and the second case when it does not sat-
isfy the voltage constrains. If the solution satisfies the
voltage constraint, it is logical to consider the decreas-
ing objective function value only. However, an analysis of
those capacitor installations, which result in a large de-
crease of the function value and small decrease of the min-
imum node voltage at the same time, is proposed. During
that process, only those capacitor installations where the
voltage stays within permissible limits are taken into ac-
count. Furthermore, it has been noticed that the method
gets “stuck” in a local optimum if only the decrease of
the objective function is observed. However, by using the
proposed procedure, the algorithm gives better solutions.

If the solution does not satisfy the voltage constraint,
we suggest observing those capacitor installations which
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Table 1. Results for 10-bus, 23-bus and 34-bus test networks where the algorithm is executed 5 times

Uncompensated Compensated network
network I II III IV V

2-3900; 2-3900; 2-4050; 2-3900; 2-4050;
Allocation of 3-1800; 3-1800; 3-1200; 3-1200; 3-1200;
capacitors 4-2400; 4-2400; 4-2850; 4-3150; 4-2850;
(node-kvar) 5-1200; 5-1200; 5-1200; 5-900; 5-1200;

10-bus 8-450; 7-150; 8-150; 8-450; 7-450; 8-450;
network 9-300 9-450 9-300 9-450 9-300

Real loss (kW) 783.777 676.160 675.891 676.765 677.126 676.765
Loss cost ($) 131,674.60 113,594.80 113,549.61 113,696.57 113,757.23 113,696.57

Capacitor cost ($) 0 1,877.25 1,922.25 1,873.35 1,920.45 1,873.35
Network cost ($) 131,674.6 115,472.05 115,471.86 115,569.92 115,677.68 115,569.92
Min. V (pu) 0.83750 0.90008 0.90018 0.90027 0.90016 0.90027

Allocation of 4-450; 7-900; 5-600; 6-600; 7-900;
capacitors 8-600; 16-900 9-450; 11-600; 17-900
(node-kvar) 17-900 17-900 17-600

23-bus Real loss (kW) 157.146 94.787 95.322 94.839 94.895 95.327
network Loss cost ($) 26,400.47 15,924.22 16,014.15 15,932.95 15,942.41 16,014.86

Capacitor cost ($) 0 410.55 329.40 410.55 396.00 329.40
Network cost ($) 26,400.47 16,334.77 16,343.55 16,343.50 16,338.41 16,344.26
Min. V (pu) 0.89339 0.95732 0.95474 0.95880 0.95405 0.95549

Allocation of 4-600; 7-900; 7-900; 9-450; 16-600; 5-900; 9-600;
capacitors 8-600; 18-600; 11-150; 20-600; 19-300;
(node-kvar) 18-900; 23-900; 20-900; 25-600; 21-300;

24-600 32-150 24-450 27-300 24-600
34-bus Real loss (kW) 221.724 159.830 160.558 160.595 159.256 159.148
network Loss cost ($) 37,249.55 26,851.52 26,973.74 26,979.93 26,755.06 26,736.89

Capacitor cost ($) 0 560.70 536.40 518.25 614.85 638.70
Network cost ($) 37,249.55 27,412.22 27,510.14 27,498.18 27,369.91 27,375.59
Min. V (pu) 0.94169 0.95028 0.95062 0.95006 0.95067 0.95059

simultaneously cause large decrease or small increase of
the function value, as well as considerable change of
extreme node voltage (decrease or increase depending
whether the voltage is above or below the limit value).
In this case, not only capacitor installations which de-
crease the function value are taken into account, but also
installations which increase the function value. Further-
more, if there are no capacitor installations decreasing the
function value, it is necessary to install capacitors which
bring extreme voltage closer to voltage limits even if it
results in the decrease of the objective function value.
If the extreme voltage is higher than the upper voltage
limit, only those installations which decrease the extreme
voltage are considered. However, if the extreme voltage
is lower than the lower voltage limit, only those installa-
tions which increase the extreme voltage are taken into
consideration. The capacitor installation which simulta-
neously provides the largest decrease (or the smallest in-
crease) of total costs and the largest increase of minimum
voltage (or largest decrease of maximum voltage) will
be found by this procedure. After extreme voltage has
reached a value within limits, all subsequent iterations
are performed as in the case where the capacitor alloca-
tion satisfies the voltage constraint. The aforementioned
procedure is mathematically expressed by the following

node cost-voltage index

NIi,j =
CNtj,k − CNtk−1

(

|V ej,k − V ek−1|/V ek−1

)t (3)

for each i = 1, 2, . . . , n and j = 0, 1, 2, . . . ,m , where:
n is the number of network nodes, m is the number of
available capacitors (j = 0 means that there is no capac-
itor at a node i), k is the number of current iteration,
V e is the extreme value (maximum or minimum) of node
voltage, t is the exponent defined as t = 1 for capacitor
allocation which does not satisfy the voltage constraint
and t = −1 for capacitor allocation which satisfies the
voltage constraint.

Notice that the negative value of node index (3) in-
dicates that there is a decrease of total network cost de-
fined by (1), while the positive index shows that there is
an increase of total network cost between two consecutive
iterations. Installation of a capacitor in a node is better
if the node cost-voltage index is smaller.

The heuristic stage of the optimization method is ex-
ecuted as follows:

1) For a solution start from the evolutionary stage, cal-
culate the node voltages and objective function value
according to (1).
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Table 2. Comparison of results for 10-bus, 23-bus and 34-bus test networks

Literature Proposed
[3] [11] [14] [16] algorithm

10-bus Loss reduction (kW) 76.000 97.800 96.907 107.340 107.886
netw. Cost reduction($) 12,012.00 14,580.00 14,399.00 16,130.00 16,202.74

23-bus Loss reduction (kW) 61.450 – – 62.200 62.359
netw. Cost reduction($) 9,992.90 – – 10,038.00 10,065.70

34-bus Loss reduction (kW) 61.800 – – 62.610 62.468
netw. Cost reduction($) 9,842.00 – – 9,850.00 9,879.64

2) If extreme node voltage for the current capacitor allo-
cation is within voltage limits go to step 8 and if above
voltage limits go to step 3.

3) Set t = 1.

4) Calculate node cost-value index for the current capac-
itor allocation for every nodes for installation of each
available capacitor and no installed capacitor with no
change capacitors in others nodes.

5) If t = −1 and there is no node with a negative node
index go to step 9, otherwise go to step 6.

6) In the node and for the capacitor for which the node
index is the smallest install the capacitor and set this
capacitor allocation as actual. Notice that if node in-
dex is the smallest for some node in case of removing
capacitor from this node existing capacitor will be re-
moved from the node.

7) If the extreme node voltage for the current capacitor
allocation is within voltage limits go to step 8, other-
wise return to step 3.

8) Set t = −1 and return to step 4.

9) Set the current capacitor allocation as the optimiza-
tion problem solution and stop the method.

5 IMPLEMENTATION AND

RESULTS ON TEST NETWORKS

In order to check the proposed method and solution
quality, different distribution networks are analyzed in
this section. The obtained results are compared to the re-
sults found in other references for the same test networks.
Four different test networks from literature were imple-
mented: three small-sized (10-bus, 23-bus, 34-bus system)
and one middle-sized (69-bus system) test network. All
networks were tested on the assumption that there exists
a balanced three-phase system. The optimization problem
was solved for time independent load and fixed capacitors
for 10-bus, 23-bus and 34-bus networks. In the case of the
69-bus network, we considered time variable load levels
and switched capacitors. All these assumptions were used
since our results were compared to the results in current
references for the same network conditions. Energy losses
for the 10-bus, 23-bus and 34-bus system have been disre-
garded due to the fact that they were not taken account of
in the compared references. In the case of the 69-bus net-
work, power peak losses have not been considered for the
same reason. The voltage constraint for all test networks,

0.9 ≤ Vi ≤ 1.1, was used as specified in references. The
computation of power flows was done using well known

classical Newton-Raphson method. The method was im-
plemented by writing a source code in MATHCAD soft-

ware. Numeration of network nodes was done so that ref-
erent node (supply network node) was designated as 0

and other nodes were designated as 1, 2, 3, . . . continuing
along the main feeder, then along the laterals closest to

the referent node etc.

We tested the method 5 times for each case to check
the abilities of the method to provide sufficient quality so-

lutions due to the stochastic character of the evolutionary
stage. Moreover, it was also done to check the behavior

of the heuristic stage for its different starting solutions.

5.1 Tests on the 10-bus network

The first test network is a 10-bus system with a 23 kV

rated voltage and no laterals. The single line diagram
and network data are given in [14] and [16]. The node

numerations are the same as in [14]. We tested this net-

work for load data given in [16] (it represents load case 1
from [14]). Available capacitor sizes and capacitor cost

coefficients for this network are taken from [14]. The to-
tal capacitor cost (Cct in (1)) is obtained by multiplying

the capacitor cost coefficient with the capacitor size for
each node with a capacitor and by summing all nodes

with installed capacitors. We used the largest capacitor
size according to the rule that the maximum capacitor

sizes should not exceed the total reactive load of a net-
work. So, the largest capacitor size is 4050 kvar. The cost

coefficient for power peak loss (Cp) as reported in [14]
is used here, CP = 168 $/(kW-Year). Table 1. shows re-

sults for an uncompensated and a compensated network
obtained by the proposed two-stage method. The best re-

sult is compared to results in [3], [11], [14], [16] shown in
Table 2.

5.2 Tests on the 23-bus network

The rated voltage for the 23-bus network is 11 kV.
This network has a main feeder with no laterals. Network

data are given in [3] and [16]. The node numeration is

the same as in [3] and [16]. Data for capacitor cost and
cost coefficient for power peak loss are the same as for

the 10-bus network. The largest capacitor in this case is
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Table 3. Results for 69-bus network where the algorithm is executed 5 times

Uncompensated Compensated network

network I II qIII IV V

Allocation of
Load capacitors 60-200; 60-200; 60-200; 60-200; 60-200;
level (node-kvar) 63-100 63-100 64-100 63-100 63-100
0.5 Real loss (kW) 51.582 40.204 40.204 40.248 40.204 40.204

Loss cost ($) 6,189.86 4,824.52 4,824.52 4,829.81 4,824.52 4,824.52
Min. V (pu) 0.95668 0.96158 0.96158 0.96185 0.96158 0.96158

Allocation of 17-300; 17-300; 15-300; 11-100; 20-200; 11-100; 21-200;
Load capacitors 60-1100; 60-1100; 60-1100; 58-100; 60-900; 58-100; 60-900;
level (node-kvar) 64-100 64-100 64-100 63-100; 64-100 63-100; 64-100
1.0 Real loss (kW) 224.895 146.579 146.579 146.652 146.266 146.269

Loss cost ($) 70,976.84 46,260.23 46,260.23 46,283.27 46,161.68 46,162.40

Min. V (pu) 0.90920 0.93050 0.93050 0.93050 0.93058 0.93058

15-100; 17-100; 17-100; 20-100; 16-200; 23-100; 15-100; 22-200;
Allocation of 15-100; 21-200; 22-200; 56-100; 23-100; 52-100; 55-100; 56-200; 55-100; 56-200;
capacitors 58-300; 60-1400; 57-100; 60-1500; 56-100; 60-1200; 60-1600; 63-800; 58-100; 60-1400;

Load (node-kvar) 63-900; 64-300 63-900; 64-300 62-800; 63-500; 64-300 63-900; 64-300
level 64 -300
1.6 Real loss (kW) 652.217 439.787 437.761 439.309 437.407 437.496

Loss cost ($) 58,699.49 39,580.87 39,389.47 39,537.83 39,366.66 39,374.61
Min. V (pu) 0.84450 0.90000 0.90030 0.90004 0.90019 0.90026

1650 kvar. The results are given in Table 1 which repre-

sent data for the uncompensated and compensated net-

work. The solution obtained by the proposed method is
compared to solutions from [3] and [16] in Table 2.

5.3 Tests on the 34-bus network

The 34-bus network has a main feeder and 4 laterals.

The system voltage is 11 kV. The system data are given

in [11] and [16] and the single line diagram is given in

[3] and [11]. Node numeration in the paper is in part dif-

ferent from numeration in [3], [11] and [16]. Numeration

of the main feeder nodes is the same whereas numera-

tion of lateral nodes correspond to numeration presented

in [3], [11] and [16] as follows: nodes 12–15 correspond to

nodes 2 1–2 4, nodes 16– 26 correspond to nodes 5 15 11,

nodes 27–29 correspond to nodes 6 16 3 and nodes 30–33

correspond to nodes 9 19 4. Data for capacitor cost and

cost coefficient for power peak loss are the same as for

the 10-bus network. The largest capacitor is 2850 kvar.

The results are given in Table 1 which show data for the

uncompensated and compensated network. The solution

obtained by the proposed method is compared to solu-

tions from [3], [16] in Table 2.

5.4 Tests on the 69-bus network

This network has a main feeder and 7 laterals. The

rated voltage is 12.66 kV. Network data are given in [13].

In this case, energy losses in the objective function have

been considered while power peak losses have not been

taken into account. Load levels and time duration of each

load level are taken from [13]. The cost of energy losses

is defined as

CE = EC

n
∑

i=1

T li Pli (4)

where: EC = 0.06 $/kWhr [13] is the energy cost, T l is

the time duration of load level in hours, Pli is the active

power loss for load level i . Now, the objective function is

CNt = EC

n
∑

i=1

T li Pli + Cc

m
∑

j=1

Qcj (5)

where: n is the number of load levels, Qcj is the capacitor

size at a node j , m is the number of nodes with installed

capacitors for all load levels, Cc = 3.0 $/kvar [13] is the

purchase cost of the capacitor.

The maximum capacitor size for load levels 1.0 and

1.6 is 2000 kvar in accordance with the rule given in [13]

which states that one bank is 100 kvar and the maximum

number of banks in a node is 20. For the load level 0.5,

the maximum capacitor size is 1300 kvar. Table 3 shows

results for the uncompensated and compensated network

for all three load levels. Table 4 shows the total results

for the best combination of solutions of each load level.

Control settings for capacitor switching depending on the

load level are shown in Table 5. In Table 5, fixed capac-

itors are marked with (F) and switchable with (S). The

solution obtained by the proposed method is compared

to solutions from [13] in Table 6.



Journal of ELECTRICAL ENGINEERING 61, NO. 6, 2010 339

Table 4. Result for the best combination of solutions for 69-bus
network

Total costs Uncompensated Compensated
network network

Loss cost ($) 135,866.19 90,688.66

Capacitor cost ($) 0 10,200.00

Network cost ($) 135,866.19 100,888.66

Table 5. Control setting for 69-bus network

Control setting (kvar)
for load level

Capacitor 0.5 1.0 1.6 Capacitor size
location (kvar)

15 0 300 100 300 (S)

21 0 0 200 200 (S)

58 0 0 300 300 (S)
60 200 1100 1400 200 (F)+1200 (S)

63 100 0 900 900 (S)

64 0 100 300 300 (S)

Table 6. Comparison of results for 69-bus test network

Total costs Literature [13]
Proposed
algorithm

Loss cost ($) 95,727.00 90,688.66
Capacitor cost ($) 9,300.00 10,200.00

Network cost ($) 105,027.00 100,888.66

Cost reduction ($) 30,878.00 34,977.53

5.5 Result overview for test networks

Comparisons of results presented in Table 2 and Ta-
ble 6. show that the two-stage method proposed in the
present paper can find solutions very close to the best
solutions which can be found in the present references.
Solutions obtained by the proposed method are even bet-
ter than those found in references. Solutions provided by
each stage of the method separately have not been re-
ported due to space limitation. However, it is interesting
to mention that the evolutionary stage has given the final
solution for the 23-bus network. In the case of the 10-bus
and 34-bus networks, the heuristic stage has significantly
improved the quality of solutions obtained by the evolu-
tionary stage. Power losses for all three networks are very
close to power losses reported in references. In order to
achieve the better solution, the 10-bus network has one
capacitor more installed than the number of capacitors
suggested in references whereas the 23-bus and 34-bus
networks have one capacitor less installed.

For time dependent load in the 69-bus network, the
proposed method has also given better solutions than
found in references. A comparison of the number of ca-
pacitors has not been made because in [13] only three
capacitor locations have been chosen with the aim of re-
ducing the search space.

The number of iterations and individuals in a popula-

tion in the evolutionary method is as follows: the 10-bus

network has 100 iterations and 100 individuals, the 23-

bus network 20 and 100, 34-bus network 30 and 100 and

69-bus network 20 and 100.

6 CONCLUSIONS AND DISCUSSION

The proposed algorithm has been executed in two

stages; first, using an evolutionary method and second,

a heuristic method. This paper proposes the use of the

evolutionary method without considering voltage con-

straints, which is not an usual practice. A new idea for

searching the solution space has been developed in the

evolutionary method. The main characteristic of the pro-

posed evolutionary method is its simplicity and reduced

number of parameters compared with genetic algorithm.

By using the proposed reproduction tool based on the

idea of parhenogenesys for the observed problem, an ad-

vantage is obtained compared with the reproduction tools

used in classic and referenced literature. Classic repro-

duction mechanism produces descendents with crossover

of chromosomes from two parents with the results of over-

population of capacitor banks which is not usable while

exploring the whole population set and approaching to

the global optimum solution. Such descendants unneces-

sarily occupy population place and they have to be elim-

inated using additional actions. These shortcomings are

completely eliminated with the proposed parthenogenetic

reproduction operator, which contributes to the simplifi-

cation of the proposed evolutionary method compared to

crossover method. The benefit of parthenogenetic method

over conventional GA crossover can be quantified for the

observed problem. The quantification can be calculated

with the ratio of the number of all combinations of ca-

pacitor banks obtained with classical crossover and the

number of all combination of capacitor banks with the

given number of capacitor. Thus for the case of network

with 34 nodes exemplified in the work and with 6 capac-

itor banks this ratio equals to

R =

(

∑M
i=0

(N/2)!
((N/2)−i)!i!

)2

∑M
j=0

(

(N/2)!
((N/2)−i)!i!

(N/2)!
((N/2)−(M−j))!(M−j)!

) = 352.65

(6)

where N is the number of network nodes (N = 34) and

M is the number of built-in capacitor banks (M = 6).

This means that the search is reduced to the 352.65-

th part of the solution space for the case of proposed

parthenogenetic reproduction operator compared to the

conventional crossover operator. This ratio increases with

the number of nodes in the network. The proposed

method can be used beside the presented problem solu-

tion also for solving optimization problems of protection

and load forecasting in power systems.
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Beside this the developed parthenogenetic reproduc-
tion operator can be applied generally for evolution meth-
ods independent of the nature of problem for cases with
restricted constrains.

The heuristic stage has obtained improved solutions
in the first stage. The heuristic method is based upon a
new sensitivity factor including changes in the objective
function and voltage values. Characteristic of the heuris-
tic method is that it significantly improves solutions ob-
tained in the evolutionary method. Also, the proposed
heuristic method is able to provide very close solutions
for different start capacitor allocations.

Comparison of solutions in previous papers for the
same test networks and same conditions has shown that
the proposed method has given quality solutions for dif-
ferent networks.

Advantages of the proposed method are its simplicity
and good quality of solutions.

In conclusion, the proposed simple two-stage method is
acceptable for solving optimization problems of capacitor
placement in radial distribution networks.
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