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COMMUNICATIONS

INFLUENCE OF ECAP ON DENSIFICATION BEHAVIOUR
IN THE PM ALUMINIUM Al–Mg–Si–Cu–Fe ALLOY
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The main aim of this paper is to show how ECAP influences the densification behaviour of PM aluminium alloys.
An aluminium based powder (Al-Mg-Si-Cu-Fe) was used as material to be investigated. After applying different compacting
pressures, specimens were dewaxed in a ventilated furnace at 400 ◦C for 60 min. Sintering was carried out in a vacuum furnace
at 610 ◦C for 30 min. The specimens were ECAPed for 1 pass. Optical characterization was carried out on the minimum
of 10 different image fields. The results were measured for each pore individually in order to describe the dimensional and
morphological porosity characteristics. ECAP influences the porosity distribution in terms of the severe shear deformation
involved.
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Fig. 1. Processing conditions

1 INTRODUCTION

Light weight aluminium alloys coupled to excellent

workability, high thermal and electrical conductivity rep-

resent a good choice for the powder metallurgy (PM) in-

dustry to produce new materials having unique capabil-

ities not available in present powder metal parts. Also

the requirement on mechanical properties of high ten-

sile strength with adequate plasticity should assure an

increasing role for aluminium alloys in the expanding PM
market [1].

It is well known [2, 3] that conventional forming meth-
ods and heat treatment can determine a limit in the level
of strength-plastic characteristics adequate to structural
properties. One possible way for achieving higher me-
chanical properties is represented by severe plastic defor-
mation (SPD), such as Equal Channel Angular Pressing
(ECAP) [4–7]. In the PM area, is a relatively new tech-
nological solution for achieving high strength [8, 9].

The main aim of this paper is to show how ECAP
influences the densification behaviour of PM aluminium
alloys.

2 EXPERIMENTAL CONDITIONS

A commercial ready-to-press aluminium based powder
(Al - 0.95 Mg - 0.49 Si - 0.21 Cu - 0.07 Fe - 1.6 lubricant)
was used as material to be investigated.

Particles size distribution was carried out by sieve an-
alyzer according to ISO 4497. After applying different
compacting pressures (400, 500, 600 and 700 MPa), spec-
imens were dewaxed before sintering in a ventilated fur-
nace type (Nabertherm) at 400 ◦C for 60 min. Sintering
was carried out in a vacuum furnace (TAV) at 610 ◦C

for 30 min, with an applied cooling rate of 6 ◦Cs−1 . The
ECAP was realized by hydraulic equipment at room tem-
perature, which makes it possible to produce the maxi-
mum force of 1 MN. The specimens were ECAPed for 1
pass. Processing conditions are shown in Fig. 1.

Optical characterization was carried out on the mini-
mum of 10 different image fields. For the determination of
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Table 1. Densification behaviour of investigated material as values
of theoretical density %, except Ψ

No. Pressing Dewaxing Sintering Ψ ECAP

a 92.48 93.11 92.12 –0.05 98.31
b 92.84 93.30 92.40 –0.06 98.39
c 93.03 92.89 92.82 –0.03 98.64
d 93.19 92.93 93.09 –0.01 98.58

Table 2. Porosity distribution of studied material before ECAP

No Dcircle fshape fcircle

a 30.64 0.70 0.92
b 30.20 0.72 0.93
c 23.64 0.69 0.92
d 21.27 0.64 0.89

Table 3. Porosity distribution of studied material after ECAP

No Dcircle fshape fcircle

a 0.97 0.67 0.91
b 0.90 0.65 0.91
c 0.85 0.67 0.91
d 0.79 0.64 0.90

porosity characteristics 100× magnification were used for
specimens prepared by pressing and sintering and 500×
for ECAPed specimens. Pores were recorded and pro-
cessed by Leica Qwin image analysis system. Dcircle , as
the diameter of the equivalent circle, and the morpho-
logical characteristics fshape and fcircle were measured
for each pore individually in order to describe the dimen-
sional and morphological characteristics. The calculations
of both parameters are reported as follows

fshape =
Dmin

Dmax

=
a

b
, (1)

where Dmin µm is the parameter representing minimum
of Feret diameter; Dmax µm is the parameter representing
maximum of Feret diameter, and

fcircle =
4πA

P 2
, (2)

where Aµm2 is the area of the metallographic cross-
section of the pore; P µm is the perimeter of the met-
allographic cross-section of the pore. The calculations of
both parameters A and P are reported as follows

A = πab , (3)

P = π[1.5(ab)−
√
ab] . (4)

Densification Ψ was calculated to determine the amount
of shrinkage or swelling during sintering:

Ψ =
ρs − ρg

ρt − ρg
, (5)

where ρs (g cm
−3) is the sintered density, ρg is the green

density (g cm−3) and ρt is theoretical density (g cm−3).

3 RESULTS AND DISCUSSION

3.1 Powder Characterization and Densification

Behaviour

Particle size distribution of the powder is in the

range of 63–100µm (48.8% fraction) and in the range

100–160µm (28.7% fraction). It can be seen that domi-

nate particle size is ∼ 100µm. Squared specimens of size
55× 10× 10 mm3 were pressed at pressures in the range

of 400–700 MPa to study the compaction characteristics.

The results presented in Tab. 1.

The maximum green density of ∼ 2.53 g · cm−3 of

compacts is obtained at 700 MPa with a level of 93%

of theoretical density.

It can be seen that with increasing pressing pressure, in

the values of theoretical density increase. It is well-known

that aluminium powder would not require much sintering

because its relative softness allows very high green den-

sities to be obtained by compaction alone, as well green

densities in excess of 90% are typical. Indeed, sintering

of aluminium often causes swelling and results in negative

densification values [10–13]. A high heating rate in tran-

sient systems also promotes liquid formation because it

limits the time available for dissolution of the additive in

the base prior to melting. ECAP process can be sufficient

to achieve a good densification. Also, the presence of ad-

sorbed and absorbed gases by the Al particles, as well as

water vapour present during vacuum sintering [14] would

increase the size of the compacts and therefore reducing

their sintered density due to volume expansion.

3.2 Porosity Distribution

Table 2 shows the values of porosity characteristics for

the investigated material processed before ECAP.

As expected, the sintering tends to the formation of

secondary porosity during transient LPS as well as the

swelling presented seems to be related to the amount of

liquid generated. The formation of secondary pores, ac-

cording to [11–13] is dependent on the previous formation

of a liquid able to migrate away from the site of the prior

alloying particles. The mix of primary (which still present

in studied materials), secondary and residual porosity re-

veals the mean values of Dcircle decreased with increasing

pressing pressure. As expected, the coarse additive parti-

cle sizes leave large residual pores behind. Sintering un-

der vacuum gave rise to the presence of higher pore con-

tent and excessive amounts of residual porosity at grain

boundaries.

Application of ECAP supported next decreasing of

pore size, represented by the value of Dcircle , Tab. 3.
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It can be noted that most of the pores diameter val-
ues are less than 1µm. It could be expected that this
large amount of small pores-nanoporosities, strongly in-
fluences both fshape and fcircle considering that small
pores evolve easily to a circular form despite of well-
known ability of ECAP to alignment of particles and
porosity [8, 15].

4 CONCLUSION

Coupling the experimental results obtained and the
literature analysis it is possible to the achieved following
conclusions:

1. ECAP influences the porosity distribution in terms of
the severe shear deformation involved.

2. The application of SPD induced the stress distribu-
tion in deformed specimens causes the powder particles
to squeeze together to such an extent that the initially
interconnected pores transform to small isolated pores,
determining a given value of the parameter Dcircle and
therefore influences the pore morphology which is rep-
resented by both fshape and fcircle .
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