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THERMAL FLUCTUATIONS IN ELECTRIC
CIRCUITS AND THE BROWNIAN MOTION
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In this work we explore the mathematical correspondence between the Langevin equation that describes the motion of a
Brownian particle (BP) and the equations for the time evolution of the charge in electric circuits, which are in contact with
the thermal bath. The mean quadrate of the fluctuating electric charge in simple circuits and the mean square displacement of
the optically trapped BP are governed by the same equations. We solve these equations using an efficient approach that allows

us converting the stochastic equations to ordinary differential equations. From the obtained solutions the autocorrelation
function of the current and the spectral density of the current fluctuations are found. As distinct from previous works, the
inertial and memory effects are taken into account.
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1 INTRODUCTION

The mathematical correspondence between mechani-
cal and electrical properties is often used to construct an
electrical model of a given mechanical system [1]. This
is a very useful way to predict the performance of a me-
chanical system, since the electrical elements are inex-
pensive and the measurements are usually very accurate.
Such analog computation has been recently used also for
stochastic systems in connection with the applicability of
thermodynamic laws on nanoscales [2, 3] and with the
so called fluctuation theorems that in the last decade at-
tract great attention not only in the statistical and con-
densed matter physics but also in the very different fields
of science from nanotechnology to biology [4–7]. In elec-
tric circuits, the fluctuations have long been considered
a nuisance — already the seminal works by Johnson and
Nyquist on noise caused by thermal agitation of charge
carriers were inspired by the problem of noise in tele-
phone wires [8, 9]. On the other hand, when the studied
system produces a frequency dependent (colored) noise,
such noise contains information on the system. The infor-
mation on the properties of the system is obtained from
the measurements of the spectral density of the fluctua-
tions, usually those of the current. The analogy with the
noisy oscillator or the Brownian motion (BM) of particles
can be very useful in the calculations of these fluctuations
and interpretation of the measurements in circuits, and
vice versa.

In the present work we explore the analogy between
the motion of a Brownian particle (BP) dragged by a
moving harmonic potential and simple electric circuits in

contact with the thermal bath, described by exactly the
same equations. Using the methods of statistical physics
we calculate the mean square displacement (MSD) of the
BP. To do this, we use the approach [10] that allows one
to convert the stochastic equations of the Langevin type
to ordinary differential equations, which are much easier
to solve. To our knowledge, the used method has not
been applied to these problems so far. Its efficiency is
seen especially in the context of solving the generalized
Langevin equations (LEs) that are often used to describe
various problems of anomalous BM [11]. Having found the
MSD of the BP (which in electric circuits corresponds
to the mean quadrate of the electric charge), it is then
easy to evaluate the BP velocity autocorrelation function
(VAF) (corresponding to the autocorrelation function for
the electric current). From these functions we calculate
the spectral density of the fluctuations, eg, the spectrum
of the colored noise produced by the circuits.

In the mentioned attempts to validate the fluctuation
theorems [5, 6, 12] the inertia-less LE [13], applicable only
for long observation times, has been solved. Although in
the studied systems the inertia time-scale was smaller
than the experimental sampling rate so that the simpli-
fied LE could be used, for the description of more accurate
experiments, see eg [14], this approach is not appropriate.
If such a theory is applied to electric circuits [5], it means
that they do not include the inductor. Moreover, it is in-
sufficient to generalize the theory simply by the consider-
ation of nonzero mass m of the particle or the inductance
L of the inductor. Both in the movement of a colloidal
particle in a solvent or in the case of nanoscale circuits in
contact with the thermal bath the memory effects should
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be taken into account. As a result, the ordinary LE for
the particle position or for the temporal evolution of the
charge in a circuit becomes inapplicable [13]. It changes
to a Volterra-type integro-differential equation with the
stochastic force represented by a colored noise, as distinct
from the white-noise force in the standard LE [3]. Our
approach to the solution of such generalized LE is exact
in the classical approximation and equally applicable to
electric circuits and the BM with memory.

2 BROWNIAN PARTICLE DRAGGED

BY OPTICAL TWEEZER

Let us consider a BP dragged through a solvent by
an optical tweezer. According to the experiment [6], the
BP is subject to an external harmonic potential with a
time dependent position x∗

t of its minimum. For t ≤ 0
this minimum is at the origin, x∗

t = 0, whereas for t > 0
it moves with a constant velocity v∗ . Its motion can be
described by the LE [13]

m
d2xt

dt2
= −α

dxt

dt
+ ξ − k(xt − v∗t) , (1)

where m is the particle mass, xt its position at the
time t , α is the friction coefficient, and ξ is the thermal
white noise with zero mean and the property 〈ξ(t)ξ(t′)〉 =
2kBTαδ(t − t′). Here, kB is the Boltzmann’s constant,
T is the temperature, δ(t) is the Dirac delta function
and the brackets 〈. . .〉 denote the statistical averaging.
Equation (1) in its overdamped limit, which corresponds
to m = 0, was used by Mazonka and Jarzynski [15] as
an exactly solvable model to illustrate some statistical-
mechanical predictions for systems evolving far from equi-
librium, and by Van Zon and Cohen [16] to describe the
discussed experiment [6]. As distinct from those works,
we will proceed with the full form of (1), keeping m 6= 0.
Due to the motion of the trap the mean value of the par-
ticle position, 〈xt〉 ≡ x∗ , will be nonzero. We thus divide
the searched solution xt in two parts: xt = x+x∗ , where
x∗ obeys the deterministic equation, ie (1) without the
random force,

mẍ∗ = −αẋ∗ − k(x∗ − v∗t) , (2)

and for x we have

mẍ = −αẋ+ ξ − kx . (3)

For the MSD X(t) = 〈[x(t) − x(0)]2〉 of the BP with
respect to the frame in which the motion of the particle
is governed by (2) we need the solution of the following
equation [10]

mẌ + αẊ + kX = 2kBT . (4)

The initial conditions are X(0) = V (0) = 0, where
V (t) = dX(t)/dt = 2D(t). The function D(t) is called
the time-dependent diffusion coefficient, which is through

the relation Φ(t) = dD(t)/dt connected to the VAF
Φ(t) = 〈v(t)v(0)〉 [17]. Equation (2) has to be solved with
the conditions x∗ = dx∗/dt = 0 at t = 0. Now the prob-
lem is fully formulated. It can be added that if one is
interested in the spectral density of fluctuations, then,
according to the Wiener- Khinchin theorem, it equals to
the Fourier transform of the autocorrelation function of
the quantity of interest [18]. So, for the fluctuation spec-
trum of the velocity we have

Sv(ω) =
2

π

∫

∞

0

dt〈v(0)v(t)〉 cosωt . (5)

One of our main results consists already in the conver-
sion of the stochastic (3) to a simple ordinary differential
equation (4). The rule on which this transformation is
based on has been long ago formulated by Vladimirsky
[10] and states that the MSD X(t) of a BP obeys the
same equation as that for the particle position x(t), if
the driving stochastic force is replaced by the constant
2kBT . In our case (4) can be easily derived from (3) for
a stationary process x . However, the method has a much
broader applicability: it can be used for any stochastic
linear equations of motion, including those that describe
non-Markovian processes.

Equation (4) has the solution

X(t) =
2kBT

k

{

1−
ε2 exp (ε1t)− ε1 exp (ε2t)

ε2 − ε1

}

, (6)

where ε1,2 = −(α/2m)×
[

1 ∓ (1 − 4km/α2)1/2
]

are the

roots of the equation mε2 + αε + k = 0 (which arise
after the substitution X ∼ exp(εt) in (4)). Solving the
deterministic (2) we obtain

x∗(t) = A∗ exp(ε1t) +B∗ exp(ε2t) + v∗t− αv∗/k ,

A∗ = v∗
1 + αε2/k

ε2 − ε1
, B∗ = −v∗

1 + αε1/k

ε2 − ε1
.

(7)

When the particle displacement oscillates in the harmonic
well, which happens if 1 − 4km/α2 < 0, we have ε1,2 =

−α/2m± iω0 , where ω0 = [k/m− (α/2m)2]1/2 ,

X(t)

2kBT/k
= 1−exp

(

−
αt

2m

)(

cosω0t+
α

2mω0

sinω0t
)

, (8)

whereas the deterministic Eq. (2) has the solution

x∗(t) = v∗
(

t−
α

k

)

−

v∗

ω0

exp
(

−
α

2m
t
)[(

1−
α2

2mk

)

sinω0t−
αω0

k
cosωot

]

.
(9)

In the discussed works [15, 16], a much simpler task was
considered. The solutions for this case follow from (8) and
(9) when m → 0,

X(t) ≈
2kBT

k

[

1− exp
(

−
k

α
t
)]

, (10)

x∗(t) ≈ v∗
[

t−
α

k
+

α

k
exp

(

−
k

α
t
)]

. (11)
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However, the correct approach requires the inertial ef-
fects, which are important at short times, to take into
account. The behavior of the solution (8) at short times
differs from that of (10). In particular, one of the ini-
tial conditions for X(t) now cannot be satisfied since
the simplified (4) with m = 0 determines the value

Ẋ(0) = 2kBT/α instead of 0. We suppose that it would
be important to prove the validity of the fluctuation the-
orems for all the times, not only for long times as in the
cited works.

The total MSD of the dragged BP in our case is

Xt(t) = 〈[xt(t)− xt(0)]
2〉 = [x∗(t)]2 +X(t) . (12)

Using it, other correlation functions for the BP, shown
after (2), can be calculated. For example, the full VAF,
〈vt(t)vt(0)〉 , is determined only by the stochastic part (8),

Φ(t) = Ẍ(t)/2. It is seen by considering the autocorrela-
tion function for the coordinate ẋt = ẋ+ ẋ∗ with respect
to the laboratory system and taking into account the ini-
tial conditions for ẋ∗ . Using Eq. (8), we find

Sv(ω) =
1

π

∫

∞

0

Ẍ cos(ωt)dt = −
ω2

π

∫

∞

0

X cos(ωt)dt .

(13)
From the solution (6) we then have

Sv(ω) =
8kBT

πα

( α

2m

)2 ω2

(ε2
1
+ ω2)(ε2

2
+ ω2)

, (14)

or, expressed explicitly through the system parameters,

Sv(ω) =
1

π

2kBTαω
2

k2 + (α2 − 2km)ω2 +m2ω4
. (15)

It follows from here that in the limit m → 0

Sv(ω) =
2kBT

π
αω2

[

k2 + (αω)2
]

−1
. (16)

This formula, however, significantly differs from the result
that is obtained after the direct use of (10) for X(t)
obtained at m = 0,

Sv(ω) = −
2kBT

π

k2

α

[

(k)2 + (αω)2
]

−1
. (17)

This again puts in doubt the proof of the fluctuation
theorems given in [16].

3 FLUCTUATIONS IN SIMPLE

ELECTRIC CIRCUITS

The presented theory thus describes, in a more consis-
tent way than in the original works [6, 15, 16], the stochas-
tic motion of a mesoscale particle dragged through a sol-
vent by a moving harmonic well. The theory is however
equally applicable to the description of quite different sys-
tems, namely, the electric circuits. Similar works can be

already found in the literature, eg [5, 19]. Equation (1) ex-
actly corresponds to a simple electric circuit in which the
resistor with the resistance R , the capacitor with the ca-
pacitance C , and the inductor with the inductance L are
connected in series. They are subject to a voltage source
V (t). Let the imposed voltage linearly increases with the
time t , V (t) = κt , and the fluctuations of the voltage
drop across the resistor are described by δV (t).The equa-
tion for such a circuit is

LQ̈+RQ̇+
1

C
Q = κt+ δV (t) . (18)

The correspondence between Eqs. (1) and (18) is seen if
the particle displacement xt is replaced by the charge
Q , L replaces the particle mass m , R and 1/C are for
the friction coefficient and the elastic constant k , respec-
tively, and the velocity of the harmonic well is changed
with the constant Cκ . In another example a resistor and
a capacitor are arranged in parallel and are subject to
a constant, non-fluctuating current source I . Energy is
being dissipated in the resistor. The fluctuations that ac-
company this dissipation are described by a random noise
term δV . The difference from (18) is only in the term κt ,
which is now replaced by It/C . Thus, the current I cor-
responds to the velocity v∗ . Such electrical systems are
of particular interest, because all parameters in the setup
can easily be controlled and the measurements are very
accurate. Moreover, as distinct from the experiments on
real particles, the “mass” (the inductance L) can be zero
so that the corresponding model is easily tractable. All
the formulas obtained in this paper are applicable to the
above described simple circuits and could be experimen-
tally tested. Particularly it concerns the spectral density
of the electric current fluctuations, which are usually ob-
served in experiments. To use our formulas to interpret
such experiment, one should just replace in (5) and (13)–
(17) the particle velocity v(t) with the electric current
I(t).

4 BROWNIAN MOTION AND

NANOSCALE CIRCUITS WITH MEMORY

The traditional LE approach is valid for the long-time
motion of BPs in fluids, as in the experiment [6]. It is
appropriate also at short times but when simultaneously
the density of the particles is much larger than the den-
sity of the surroundings; for details see [14, 20]. A more
correct approach requires replacing the Stokes friction
force (valid only for the steady motion of particles) by
a force that describes also the transition of the particle
to the steady state. For incompressible fluids it is the
Boussinesq force that takes into account the memory ef-
fects in the particle motion. It is natural to expect that
the effects of memory exist also in electric circuits. Then
the question arises how these effects (ie, an “anomalous”
relaxation of the charge or current, which differs from
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the normal behavior of the BP within the Langevin the-
ory) can be theoretically described. It could be done phe-
nomenologically (modeling the resistivity) or from first
principles, explicitly describing the thermal bath, which
is the method suitable also for the description of dissi-
pative quantum- mechanical situations. Recently, such a
theory has been developed for nanoscale RLC circuits in
contact with the thermal bath [3]. The bath was modeled
by harmonic oscillators (linear LC circuits) attached to
the studied circuit. After the standard canonical quanti-
zation scheme applied to the whole closed Hamiltonian
system and next tracing out the bath, since only the de-
grees of freedom of the initial circuit are considered to be
observable, the final generalized LE for the charge Q(t)
can be obtained. Let the resistor and the capacitor have
the resistance R and the capacitance C , Γ is the max-
imal frequency of the bath and η(t) is the noise, which,
in the classical limit considered here, has the property
〈η(t)η(0)〉 = kBTRΓ exp(−Γt). Then the equation for
Q(t) is [3]

LQ̈+
(

RΓ+
1

C

)

−RΓ2

∫ t

0

dτ exp[−Γ(t− τ)]Q(τ) = η(t) .

(19)
This equation can be solved for the quantity v(t) =

dξ(t)/dt = (d/dt)〈[Q(t) −Q(0)]2〉 , using the already ap-
plied rule [10]. We just have to replace in Eq. (19) Q(t)

with ξ(t) =
∫ t

0
v(τ)dτ , and the force η(t) with 2kBT .

The new integro-differential equation is deterministic and
can be solved using the Laplace transformation. For the
Laplace transformed quantity ṽ(s) = L{v(t)} , taking
into account the conditions ξ(0) = v(0) = 0 and ap-
plying the convolution theorem, we obtain the following
equation

ṽ(s) = 2kBT
Γ + s

Ls3 + ΓLs2 + s(ΓR+ 1/C) + Γ/C
=

2kBT
Γ + s

(s− s1)(s− s2)(s− s3)
. (20)

Its solution is straightforward. The inverse Laplace trans-
form can be obtained from this expression after its decom-
position to simple fractions ∼ 1/(s−si), where si are the

roots of the cubic equation Ls3 +ΓLs2 + s(ΓR+1/C) +
Γ/C = 0. Then, eg, if the roots si are different, v(t) will

be a sum of exponentials v(t) =
∑3

i=1
Ai exp(sit). It is

seen from the decomposition

Γ + s

(s− s1)(s− s2)(s− s3)
=

A1

s− s1
+

A2

s− s2
+

A3

s− s3
,

(21)
where the constant A1 = (Γ + s1)/[(s1 − s2)(s1 − s3)]
is obtained after multiplying this equation by (s − s1)
and then setting s = s1 ; other constants are of the
same form with the cyclic change of the indexes 1 →
2 → 3 → 1. The limits of long and short times are
determined by the limiting behavior of ṽ(s) at s → 0
and s → ∞ , respectively. In this way we find v(t) ≈

(2kBT/ΓL)[1 − exp(−Γt)] ≈ 2kBT t/L , as t → 0. This

corresponds to ξ(t) ∼ t2 , exactly as in the case of the
MSD for the BPs. The autocorrelation function for the

current, i(t) = 〈I(t)I(0)〉 , exponentially approaches the
constant kBT/L , as t → 0. At long times v(t) and i(t)
converge to zero with the relaxation time RC + 1/Γ,

v(t) ≈ 2kBTC(RC + 1/Γ)−1 exp[−t/(RC + 1/Γ)]. The
“MSD” ξ(t) at long times approaches the value 2kBTC .

If L = 0 from the beginning, the condition ξ(0) = 0 can-
not be satisfied, since the equation of motion would yield

2kBT = 0. If L 6= 0, at t = 0 we have Lξ̈(0) = 2kBT , so

that the expansion at small t is ξ(t) = kBT t
2/L+ . . .

5 CONCLUSION

In conclusion, we have theoretically described the

chaotic motion of a colloidal particle optically trapped
in a harmonic well that uniformly moves in a solvent.
This situation was realized in several experiments but, in
our opinion, the original description of them, as an over-

damped motion of a Brownian particle, is not satisfactory.
Whereas it is appropriate asymptotically for long times, it
gives incorrect dependencies of the relevant time correla-

tion functions at short times. Accordingly, their spectral
densities show an improper dependence on the frequency.
This could be verified in accurate electric measurements

on simple circuits in contact with the thermal bath, which
are within the approach based on the traditional Langevin
equation exact analogues to the Brownian motion. How-

ever, the applicability of the Langevin equation to the
Brownian motion in suspensions has a strong limitation.
When the characteristic times in experiments are com-
parable to or smaller than R2ρ/η , where R is the parti-

cle radius and ρ and η are the density and viscosity of
the solvent, the viscous aftereffect should be taken into
account. For such time scales the presented solution be-

comes inapplicable. A similar situation takes place for
nanoscale electric circuits, which are now possible to re-
alize experimentally. In both cases the evolution of the

studied systems is characterized by some kind of mem-
ory. The corresponding Langevin equations thus turn to
stochastic integro-differential equations and involved cal-

culations are needed to solve them. Our work represents
a progress with such problems. It consists in converting
the complicated stochastic equations of motion into the
deterministic ones that are quite easily solvable analyt-

ically. We have shown that within the classical consid-
eration the exact solution of the generalized Langevin
equation can be found. The method is directly applicable

to the description of the Brownian motion driven by a
colored noise since for the usual micron-sized particles
the classical approach is relevant. However, for nanoscale

circuits and low temperatures the quantum effects be-
come important [2, 3]. The future work thus requires a
generalization of the presented method of solution to the

case of quantum noise.



256 G. Vasziová — J. Tóthová — L. Glod — V. Lisý: THERMAL FLUCTUATIONS IN ELECTRIC CIRCUITS AND . . .

Acknowledgement

This work was supported by the Agency for the
Structural Funds of the EU within the projects NFP
26220120021 and 26220120033, and by the grant VEGA
1/0300/09.

References

[1] TANG, K. T. : Vector Analysis, Ordinary Differential Equations
and Laplace Transforms. Mathematical Methods for Engineers
and Scientists, Part II, Springer-Verlag, Berlin, Heidelberg, 2007.

[2] NIEUWENHUIZEN, T. M.—ALLAHVERDYAN, A. E. : Sta-
tistical Thermodynamics of Quantum Brownian Motion: Con-
struction of Perpetuum Mobile of the Second Kind, Phys. Rev.
E 66 (2002), 036102.

[3] ALLAHVERDYAN, A. E.—NIEUWENHUIZEN, T. M. : On
Testing the Violation of the Clausius Inequality in Nanoscale
Electric Circuits, arXiv:cond-mat/0205156v1, Phys. Rev. B 66

(2002), 115309, (see also comment on this article in: Gyftopou-
los, E.P. – von Spakovsky, M.R.: Comments on Testing the Vio-
lation of the Clausius Inequality in Nanoscale Electric Circuits,
arXiv 0706.2842v1 [quant-ph]).

[4] EVANS, D. J.—SEARLESD. J. : The Fluctuation Theorem,
Adv. Phys. 51 (2002), 1529–1585.

[5] VAN ZON, R.—CILIBERTO, S.—COHEN, E. G. D. : Power
and Heat Fluctuation Theorems for Electric Circuits,
arXiv:cond-mat/0311629v2, Phys. Rev. Lett. 92 (2004), 130601.

[6] WANG, G. M.—SEVICK, E. M.—MITTAG, E.—SEARLES,
D. J.—EVANS, D. J. : Experimental Demonstration of Viola-
tions of the Second Law of Thermodynamics for Small Systems
and Short Time Scales, Phys. Rev. Lett. 89 (2002), 050601.

[7] TANIGUCHI, T.—COHEN, E. G. D. : Nonequilibrium Steady
State Thermodynamics and Fluctuations for Stochastic Sys-
tems, J. Stat. Phys. 130 (2008), 633–677.

[8] JOHNSON, J. B. : Thermal Agitation of Electricity in Conduc-
tors, Nature 119 (1927), 50-51, Phys. Rev. 32 (1928) 97–109.

[9] NYQUIST, H. : Thermal Agitation of Electric Charge in Con-

ductors, Phys. Rev. 29 (1927), 614, Phys. Rev. 32 (1928)
110–113.

[10] VLADIMIRSKY, V. V. : To the Question of the Evaluation of
Mean Products of Two Quantities Related to Different Moments
of Time in Statistical Mechanics, Zhur. Eksper. Teor. Fiz. 12

(1942), 199–202. (in Russian)
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