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DESIGN OF ROBUST PI CONTROLLERS AND THEIR
APPLICATION TO A NONLINEAR ELECTRONIC SYSTEM
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The principal aim of the paper is to present a possible approach to the design of simple Proportional-Integral (PI)
robust controllers and subsequently to demonstrate their applicability during control of a laboratory model with uncertain
parameters through the Programmable Logic Controller (PLC) SIMATIC S7-300 by Siemens Company. The proposed and
utilized synthesis consists of two steps. The former one is determination of controller parameters area, which ensures the

robustly stable control loop and is based on computing/plotting the stability boundary locus while the latter one lies in the
final choice of the controller itself relying on algebraic techniques. The basic theoretical parts are followed by laboratory
experiments in which the 3rd order nonlinear electronic model has been successfully controlled in various working points.
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1 INTRODUCTION

The contemporary industrial practice clearly prefers
the usage of simple PI or PID controllers with fixed pa-
rameters despite the existence of many advanced con-
trol technologies. PI/PID compensators are well known,
widespread and easily applicable, and so the investigation
of an effective method of their tuning is still very topical,
especially if these algorithms should be able to cope with
various uncertain conditions.

Among an array of existing methods, eg [1, 3, 19], a
possible way of robust controller design for systems with
parametric uncertainty comprises the computation of all
robustly stabilizing controllers and then the choice of the
final one on the basis of additional user requirements.
For the determination of (robustly) stabilizing controllers
the method using the stability boundary locus plotting in
combination with the sixteen plant theorem, which is de-
scribed in [16] and [17], can be used. Besides, an elegant
tool for control design itself can be adopted from the al-
gebraic approach [7, 11, 20]. This technique is based on
general solutions of Diophantine equations in the ring of
proper and Hurwitz stable rational functions (RPS ). It
assumes the utilization of the Youla-Kučera parameteri-
zation, and conditions of divisibility in the specific ring.
Furthermore, the selected controller can be further tuned
through the only scalar tuning parameter m > 0.

The paper deals with the problem how to find a sim-
ple continuous-time PI controller which robustly stabi-
lizes and appropriately controls an interval plant. The
novelty of the proposed approach consists in combina-
tion of plotting the stability boundary locus and choosing

the final controller via an algebraic methodology. Further-

more, the work is focused not only on theoretical aspects

of the proposed control design but also on its practical

application in laboratory conditions. Thus, an electronic

laboratory model has been identified as a system with

parametric uncertainty and it has been controlled in var-

ious operational points using the designed simple PI al-

gorithms which have been realized with the assistance of

PLC SIMATIC S7-300.

The paper is organized as follows. In Section 2, basic

theoretical background for computation of all possible ro-

bustly stabilizing PI controllers is provided. The Section 3

then contains the fundamentals of the algebraic approach

to control design in RPS and applied controller tuning

rules. Next, the Section 4 briefly describes SIMATIC in-

dustrial automation systems used in the practical part.

Furthermore, the real laboratory experiments themselves

in the meaning of model description, identification, cal-

culations of controllers and real control results are pre-

sented in the extensive Section 5. And finally, Section 6

offers some conclusion remarks.

2 COMPUTATION OF (ROBUSTLY)

STABILIZING PI CONTROLLERS

This part is intended to provide the basic ideas related

to computing the PI controllers which stabilize the closed

loop with fixed controlled system and consequently to ex-

tend the applicability of this approach for interval plants.
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2.1 Controlled systems with fixed parameters

A potential approach to calculation of stabilizing PI
controllers based on plotting the stability boundary locus
is proposed in [16] and [17]. The method supposes the
classical closed-loop control system with controlled plant

G(s) =
B(s)

A(s)
(1)

and PI controller:

C(s) = kp +
kI

s
=

kp + kI

s
. (2)

Initially, one needs to use the substitution s = jω in
the plant (1) and then to decompose the numerator and
denominator of this transfer function into their even and
odd parts

G(jω) =
BE(−ω2) + jωBO(−ω2)

AE(−ω2) + jωAO(−ω2)
. (3)

Thereafter, expressing the closed-loop characteristic poly-
nomial and setting the real and imaginary parts to zero
lead to the equations

kp =
ω2A0(−ω2)B0(−ω2) + AE(−ω2)BE(−ω2)

−ω2B2
0(−ω2)−B2

E(−ω2)
,

(4)

kI = ω2AE(−ω2)B0(−ω2)−A0(−ω2)BE(−ω2)

−ω2B2
0(−ω2)−B2

E(−ω2)
.

Simultaneous solution of these relations and plotting
the obtained values into the (kp, kI) plane result in the
stability boundary locus splitting the (kp, kI) plane into
the stable and unstable regions. Determination of the sta-
bilizing area (or areas) can be done via a test point within
each region. However, the proper frequency gridding is a
potential problem. That is why this technique can be em-
bellished with the Nyquist plot based approach from [14].
In this refinement, the frequency axis can be separated
into several intervals by the real values of ω which fulfil

Im[G(s)] = 0 . (5)

The stability or instability of a closed loop cannot change
inside of frequency intervals resulting from (5) but only
on their boundaries. Thus, such intervals are then very
helpful for selection of the proper frequency scale.

2.2 Improvement of the method for interval

systems

So far, the area of stabilizing controller coefficients
for a given plant with only fixed parameters has been
analyzed. However, the papers [16, 17] have improved the
stabilization also for interval plants using the simple idea
of its combination with the sixteen plant theorem [1, 2, 4].

In compliance with this principle, a first order controller
robustly stabilizes an interval plant

G(s, b, a) =
B(s, b)

A(s, a)
=

∑m

i=0[b
−

i , b
+
i ]s

i

∑n

i=0[a
−

i , a
+
i ]s

i
, m < n (6)

where b−i , b
+
i , a

−

i , a
+
i are lower and upper bounds for

numerator and denominator parameters, respectively, if
and only if it stabilizes its 16 Kharitonov plants, which
are defined as

Gi1,i2(s) =
Bi1(s)

Ai2 (s)
(7)

where i1, i2 ∈ {1, 2, 3, 4} ; and B1(s) to B4(s) and A1(s)
to A4(s) are the Kharitonov polynomials for the numer-
ator and denominator of the interval system (6), respec-
tively.

Remind that the Kharitonov polynomials eg for an
interval polynomial

B(s, b) =

m
∑

i=0

[b+i ; b
−

i ]s
i (8)

can be constructed using the upper and lower bounds of
interval parameters according to the rule [5]:

B1(s) = b−0 + b−1 s+ b+2 s
2 + b+3 s

3 + . . .

B2(s) = b+0 + b+1 s+ b−2 s
2 + b−3 s

3 + . . .

B3(s) = b+0 + b−1 s+ b−2 s
2 + b+3 s

3 + . . .

B4(s) = b−0 + b+1 s+ b+2 s
2 + b−3 s

3 + . . .

(9)

In other words, the stabilization of an interval plant fol-
lows from the stabilization of all 16 fixed Kharitonov
plants. So the final stability region for an interval plant
is given by intersection of all 16 related partial regions
plotted individually according to the methodology from
Subsection 2.1.

3 ALGEBRAIC DESIGN OF A CONTROLLER

The technique from the previous section allows deter-
mining the (robustly) stabilizing combinations of propor-
tional and integral gains in PI controller. However, the
final choice of the compensator is still an open question.
A possible algebraic control design method has been de-
veloped in [7] and [20]. It is based on general solutions of
Diophantine equations in RPS . Moreover, it supposes the
utilization of the known Youla-Kučera parameterization,
which allows generating infinite amount of possible stabi-
lizing controllers, while the choice of the final one depends
on the desired properties mathematically represented by
conditions of divisibility in the specific ring. Anyway, the
selected controller can be further tuned. One of advan-
tages of this approach is that behaviour of regulators can
be influenced by the only scalar tuning parameter m > 0.
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Fig. 1. General feedback control system

The synthesis assumes the description of linear sys-
tems in RPS as a ratio of two rational fractions

G(s) =
b(s)

a(s)
=

b(s)(s+m)−n

a(s)(s+m)−n
=

B(s)

A(s)
,

n = max{deg(a), deg(b)} , m > 0 .

(10)

As it has been already mentioned, the scalar positive
parameter m > 0 will be later conveniently used as a
“tuning knob”.

A general feedback system is shown in Fig. 1. It
represents the classical feedback one-degree-of-freedom

(1DOF) control loop for C(s) = Q(s)
P (s) . Thus, the signal u

is generated according to the control law

P (s)u = Q(s)[w − y] + P (s)n . (11)

In a two-degree-of-freedom (2DOF) control system, the
controller C(s) would consist of two transfer functions
Q(s)
P (s) and R(s)

P (s) . The control law is then governed by

P (s)u = R(s)w −Q(s)y + P (s)n . (12)

The objective is to design controller transfer functions
such that the feedback system is internally bounded-input
bounded-output (BIBO) stable, the reference error tends
asymptotically to zero and the disturbances v and n

are asymptotically eliminated from the plant output. All
transfer functions of the closed control system (Fig. 1)
have a common denominator AP +BQ . One of the nice
and convenient results of the algebraic philosophy is that
this denominator should be a unit in the ring RPS . In
other words, the term (AP +BQ)−1 resides in RPS and
the feedback system is BIBO stable. If the elements A

and B are coprime in RPS then all stabilizing controllers
are given through an arbitrary solution P0 , Q0 of Dio-
phantine (Bézout) equation

AP +BQ = 1 (13)

in a parametric form

Q

P
=

Q0 −AT

P0 + BT
(14)

where T varies over RPS while satisfying P0 + BT 6=
0. This relation is known as (Bongiorno-)Youla-Kučera
parameterization.

From the practical point of view, it is almost always
desirable to ensure more than stability. The most frequent
problem is that of reference tracking. Under assumption
of zero disturbances (n = v = 0), algebraic analysis
results in the fact that the tracking error e tends to zero
if

a) Fw divides AP for 1DOF,

b) Fw divides (1 −BR) for 2DOF.

The last condition gives the second Diophantine equation
in the form

FwZ +BR = 1 . (15)

Details of this method can be found for example in [10–
12].

From a set of developed results, this paper takes ad-
vantage of the 1DOF nominal tuning rules for the first
order plant

G(s) =
b0

s+ a0
. (16)

Further, step-wise reference with Fw = s
s+m

and no dis-

turbances are assumed. The Diophantine equation (13)
takes the form

s+ a0

s+m
p0 +

b0

s+m
q0 = 1 . (17)

Multiplying by (s+m), comparing coefficients and appli-
cation of Youla-Kučera parameterization give the general
stabilizing solution in the form

P (s) = p0 +
b0

s+m
T ; Q(s) = q0 −

s+ a0

s+m
T (18)

where q0 = m−a0

b0
; p0 = a and T is free in RPS . The

asymptotic tracking for a stepwise reference w will be
given by divisibility of Fw = s

s+m
and AP . It is achieved

for T = t0 = −m
b0

so that P (s) has a zero absolute

coefficient in the numerator. Then inserting t0 into (18)
gives

P (s) =
s

s+m
; Q(s) =

q̃1s+ q̃0

s+m
. (19)

Thus, the final 1DOF feedback controller has the transfer
function

C(s) =
Q(s)

P (s)
=

q̃1s+ q̃0

s
=

kps+ kI

s
(20)

which is a traditional PI control law governed by

u(t) = kp[w(t) − y(t)] + kI

∫

[w(t)− y(t)]dt (21)

and where

kp =
2m− a0

b0
; kI =

m2

b0
. (22)
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Fig. 2. Block scheme of the laboratory model

Table 1. Relation between k and overshoot

Overshoot (%) k

0 1.00
1 1.62
2 1.87
3 2.14
4 2.44
5 2.80
6 3.25
7 3.81
8 4.58
9 5.67
10 7.38

A possible way of additional controller tuning via m > 0
represents the simple recommendation

m = ka0 (23)

where the suitable coefficient k can be chosen from the
Tab. 1, which expresses the relation between k and the
size of first overshoot of the output (controlled) variable
in percentage.

The derivation of presented nominal tuning results and
some extending analyses are available eg in [8].

4 SIMATIC INDUSTRIAL
AUTOMATION SYSTEMS

For the purpose of experiments presented in the paper,
not only theoretical background is necessary, but also the
technical realization of the algorithms must be in the in-
terest. The SIMATIC systems offer a complex solution
for various tasks of industrial automation. From the con-
trol engineer point of view, the very attractive devices are
included in the SIMATIC series of modular PLCs called
SIMATIC S7.

4.1 PLC SIMATIC S7-300

Among the number of products, the controller SIMATIC
S7-300 is a reasonable automation system for many pro-
cess control applications, especially with the focus on
manufacturing engineering, both in centralized and dis-
tributed configurations. The advantage is the ability to
integrate a wide range of powerful CPUs with Indus-
trial Ethernet/PROFINET interface, an array of avail-
able modules, integrated technological functions, or fail-
safe designs.

4.2 SIMATIC S7 software equipment

The programming of SIMATIC controllers, user’s data
accessing and, generally, the monitoring and control of
real processes is performed through the programming
(STEP7) and visualization (WinCC) software. The struc-
ture of the user’s program is created by the organization
block OB35 which represents the main program working
in cycles with the period of 100ms. The OB35 then in-
cludes all needful function blocks, such as a continuous
PID controller (FB41).

The set of several tasks must be done before program-
ming the blocks [6, 13]. It is necessary to create a project,
configure a network, define input and output modules
and define connections between them. Visualization of the
project is realized in the Graphics Designer which is a part
of WinCC system. Software tool WinCC gives possibility
to define user’s own visualization for controlled processes
through the various manipulating elements, I/O fields,
monitoring windows, etc. WinCC processes all important
data from the program STEP7 while the connection be-
tween WinCC and STEP7 is linked by tags.

5 REAL LABORATORY EXPERIMENTS

The following section successively presents the prac-
tical application of the proposed control design method
going from model description, continuing through identi-
fication experiments and calculations of two suitable con-
trollers and finishing with the real control results.

5.1 Model description

The laboratory process is a nonlinear electronic model,
which includes a 3rd order system with a variable time
constant, adjustable from 5 s to 20 s, and a model of non-
linear valve. The block scheme of the laboratory process
is in Fig. 2, where signals are denoted as follows

V – control signal for valve opening (0-10V)
F – signal representing the valve opening (0-10V)
P – output of the process (0-10V)
U – disturbance (0-10V)

5.2 Identification

The laboratory model was assumed as a black box
and it was identified using step response experiments and
Strejc method [15] in the form of a transfer function

G(s) =
K

(Ts+ 1)n
e−Ds (24)

thus as a n-th order plant with multiple time constant T ,
gain K and time-delay D . The step responses were mea-
sured in various working areas which led to the transfer
function with parametric uncertainty

G(s,K, T,D) =
K

(Ts+ 1)2
e−Ds =

K

T 2s2 + 2Ts+ 1
e−Ds

(25)
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where K , T , and D are supposed to vary within intervals
obtained from minimum and maximum measured values
[18]

K ∈ [K−,K+] = [0.37 , 5.186] (−)

T ∈ [T−, T+] = [9.2909 , 11.0733] (sec) (26)

D ∈ [D−, D+] = [0.966 , 2.181] (sec)

The denominator of model (25) has a single parameter
polynomial structure of uncertainty and in the following
considerations it will be overbounded by interval polyno-
mial. Thanks to the fact, that the mutual dependence be-
tween two polynomial coefficients has been ignored, the
potential robust stability tests will provide results with
“only” stronger sufficient and not necessary and sufficient
condition. However robust stability of the overbounding
system would entail that also the original object is ro-
bustly stable.

So, the final overbounding interval system with time-
delay is

G0(s,K, T,D) =

[K−,K+]

[(T−)2, (T+)2] s2 + [2T−, 2T+] s+ 1
e−[D−,D+]s . (27)

After insertion, the final transfer function appears

G0(s,K, T,D) =

[0.37, 5.186]

[86.3208, 122.618]s2+[18.5818, 22.1466]s+ 1
e[0.966,2.181]s.

(28)

5.3 Determination of robustly stabilizing PI

controllers

The computation of stabilizing PI controllers has been
performed by method described in Section 2. However,
first of all, it is necessary to put the transfer function
into the form of rational function only, ie the time-delay
term has to be approximated. For example, the first order
Taylor expansion in denominator can be utilized. In other
words, the object for future robust stability consideration
has now moved from (25) or (27) to (29)

GA(s,K, T,D) =

[K−,K+]

[(T−)2, (T+)2] s2 + [2T−, 2T+] s+ 1
·

1

[D−, D+]s+ 1

= [K−,K+]
{

[

(T−)2D− , (T+)2 D+
]

s3

+
[

2T−D− + (T−)2, 2T+D+ + (T+)2
]

s2

+ [D− + 2T−, D+ + 2T+]s+ 1
}

−1

. (29)

The quantification leads to the approximated transfer
function

GA(s,K, T,D) = [0.37 , 5.186]
{

[83.3859 , 267.4298]s3+

[104.2708, 170.9197]s2+[19.5478, 24.3276]s+1
}

−1
. (30)

The first of its 16 Kharitonov plants can be easily deter-
mined according to (7)

G1,1(s) =
0.37

267.4298s3 + 170.9197s2 + 19.5478s+ 1
.

(31)
Afterwards, the relations (4) have been expressed

kp = 461.9451ω2 − 2.7027 ,

kI = −722.7832ω4 + 52.8319ω2
(32)

and then the suitable frequency interval for plotting the
stability boundary locus can be computed using (5)

ω ∈ (0 ; 0.2704) . (33)

Simultaneous solving of the equations (32) and plotting
the results into the (kp, kI) plane leads to a stability
region.

An analogical procedure must be repeated generally
for all 16 Kharitonov plants. However, in this specific case,
only the 8 plants are sufficient, because the numerator of
(30) has only the gain with two extreme values and so it is
not necessary to construct all 4 Kharitonov polynomials
for such numerator.

Anyway, the stability regions for all 8 (16) Kharitonov
plants are shown in Fig. 3 (interior areas).

The zoomed intersection of all stability regions from
Fig. 3 determines the final area of robustly stabilizing PI
controller coefficients for the original interval system (30)
— see Fig. 4.

Fig. 3. Stability areas for 8, (16) - Kharitonov plants

Fig. 4. Stability area for the interval system, (30)
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Fig. 5. Position of controllers, (36) - in stability region

5.4 Controller choice

Once the boundaries of robustly stabilizing PI coeffi-

cients are obtained, quite natural question emerges. How

to find the practically suitable controller from this set?

Here, the algebraic approach from the Section 3 has been
applied.

For the sake of appropriate order of the final controller
(first order PI type), the controlled system must be
described in the form of first order plant. The simple
approximation of (29) leads to

GAA(s,K,D, T ) =
[K−, K+]

[D− + 2T−, D+ + 2T+] s+ 1

=
[0.37, 5.186]

[19.5478, 24.3276]s+ 1
(34)

The average values of interval parameters then give the
nominal plant (for control design)

GN (s) =
2.778

21.9377s+ 1
=

0.1266

s+ 0.04558
. (35)

And now, the requirement of 0% and 1% first overshoot
in controlled variable for the case of nominal system has
been assumed. Thus, the utilization of appropriate pa-
rameters k from Tab. 1 and, moreover, of the equations

Fig. 6. Real control behaviour for various set points
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(23) and (22) result in the controller transfer functions

0% ⇒ m = 0.04558⇒ C1(s) =
0.36s+ 0.0164

s

1% ⇒ m = 0.07384⇒ C2(s) =
0.8065s+ 0.0431

s

(36)

The position of these controllers in the stability region
from Fig. 4 is depicted in Fig. 5. They lie on the curve
which hypothetically connects the controllers tuned by
various parameters m .

5.5 Real control experiments

Six control experiments have been performed for var-
ious reference points using the derived controllers and
described hardware/software tools. The results are visu-
alised in Fig. 6.

As expected, the prescribed overshoots were not possi-
ble to observe in real measurements (they holds true just
for the nominal system), because of the plant nonlinear-
ity. As can be seen, the “less aggressive” controller C1

is very good mainly in middle levels of set points, how-
ever it has quite long settling time in higher areas. At the
other side, the controller C2 is much “faster” here, but
it is oscillating in the lower set points. All in all, both
controllers are able to control the process robustly stable
with acceptable behaviour and the choice of the controller
would depend on the main operational condition and user
consideration.

6 CONCLUSIONS

Proportional-Integral controller design based on com-
bination of plotting the stability boundary locus and the
algebraic methodology has been proposed and success-
fully tested in laboratory conditions. The developed syn-
thesis represents relatively easy and effective way of tun-
ing of controllers for interval plants. On the other hand,
coincident robust stability and nominal performance can
not be assured in advance but they have to be verified
during the design process which can be seen as a draw-
back of the approach. For the purpose of this paper, the
designed algorithms have been technically realized during
control of nonlinear 3rd order electronic model assumed
as system with parametric uncertainty using control loop
on the basis of PLC SIMATIC S7-300.
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[7] KUČERA, V. : Diophantine Equations in Control — A survey,

Automatica 29 No. 6 (1993), 1361–1375.
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