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Abstract

Purpose: This study introduces an algorithm to construct tag trees that can be used as a user-
friendly navigation tool for knowledge sharing and retrieval by solving two issues of previous 
studies, i.e. semantic drift and structural skew.

Design/methodology/approach: Inspired by the generality based methods, this study builds 
tag trees from a co-occurrence tag network and uses the h-degree as a node generality metric. 
The proposed algorithm is characterized by the following four features: (1) the ancestors 
should be more representative than the descendants, (2) the semantic meaning along the 
ancestor-descendant paths needs to be coherent, (3) the children of one parent are collectively 
exhaustive and mutually exclusive in describing their parent, and (4) tags are roughly evenly 
distributed to their upper-level parents to avoid structural skew. 

Findings: The proposed algorithm has been compared with a well-established solution 
Heymann Tag Tree (HTT). The experimental results using a social tag dataset showed that the 
proposed algorithm with its default condition outperformed HTT in precision based on Open 
Directory Project (ODP) classification. It has been verified that h-degree can be applied as a 
better node generality metric compared with degree centrality.

Research limitations: A thorough investigation into the evaluation methodology is needed, 
including user studies and a set of metrics for evaluating semantic coherence and navigation 
performance.

Practical implications: The algorithm will benefit the use of digital resources by generating 
a flexible domain knowledge structure that is easy to navigate. It could be used to manage 
multiple resource collections even without social annotations since tags can be keywords 
created by authors or experts, as well as automatically extracted from text.

Originality/value: Few previous studies paid attention to the issue of whether the tagging 
systems are easy to navigate for users. The contributions of this study are twofold: (1) an 
algorithm was developed to construct tag trees with consideration given to both semantic 
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coherence and structural balance and (2) the effectiveness of a node generality metric, 
h-degree, was investigated in a tag co-occurrence network. 

Keywords Semantic coherence; Structural balance; Tag tree; Resources navigation; 
Algorithm

1 Introduction

Social tagging provides an easy and intuitive way to annotate, share, and retrieve 
resources on the Web. In recent years, several studies have focused on constructing 
tag trees (Almoqhim, Millard, & Shadbolt, 2013; Benz et al., 2010; Candan, Di 
Caro, & Sapino, 2008; Helic & Strohmaier, 2011; Heymann & Garcia-Molina, 
2006; Li et al., 2007; Luo & Chen, 2013; Tsai et al., 2009; Verma et al. 2015). Some 
of them depended on expert thesauri and tried to derive a model of knowledge 
domain with precise concepts and relationships. Other studies applied hierarchical 
clustering algorithms to classify tags based on their similarity. While much work 
has been centered on the structure of social tagging systems, little is known about 
the ways of how users navigate such systems.

A tag tree can serve as a navigation tool in many cases, especially when users 
explore an unfamiliar domain, or their information needs are not specific enough. 
From the users’ perspective, they may not care whether the semantic relationships 
are as canonical as those defined by domain experts; yet they would be deeply 
impressed if the navigation experience with a tag tree is smooth. 

In order to adapt to multiple complex domains, some foundational algorithms 
have been put forward to generate tag trees without expert thesauri (e.g. Benz et al., 
2010; Heymann & Garcia-Molina, 2006; Strohmaier et al., 2012b). However, a 
problem of semantic drift along a path, such as “education->tools->design->blog-
>business->marketing,” has been noticed (Luo & Chen, 2013). The drift will 
generate usability issues. On the other hand, the structural balance of the generated 
hierarchy was not discussed in these studies. Structure usually plays an important 
role in navigation efficiency. People were found to be consciously or unconsciously 
weighing the trade-offs between the breadth and depth of the folder hierarchy when 
organizing their own digital resources (Chen et al., 2012). It is probable that they 
have similar tastes in navigating a tag hierarchy. Thus structural control is of 
considerable importance.

The contributions of this study are twofold: (1) an algorithm was developed to 
construct tag trees with consideration given to both semantic coherence and structural 
balance; and (2) the effectiveness of a node generality metric, h-degree, was 
investigated in a tag co-occurrence network. Generality helps to keep the semantic 
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reasonability during the hierarchy development. Proper metrics will benefit the 
usability of tag trees. Derived from the h-index (Hirsch, 2005), h-degree has been 
used as a basic indicator for weighted networks (Zhao, Rousseau, & Ye, 2011). Yet 
it was unknown whether it can be applied to measure node generality of a navigation-
oriented tag tree. In this article, it has been verified that h-degree can be applied as 
a node generality metric since it focuses on the salient meanings of a tag and 
eliminates the influence of individual co-occurrence of tags. 

The paper is organized as follows: Section 1 introduces the background and the 
contributions of this study. Section 2 reviews the related work. Section 3 discusses 
the desired features of a tag tree from the perspective of navigation of tagging 
systems, followed by Section 4, which proposes the algorithm for constructing 
a desired tag tree from a tagging network. Then Section 5 evaluates the algorithm 
as well as the node generality metric based on Open Directory Project (ODP) 
classification. Finally Section 6 is the conclusion as well as suggestions for the 
future work. 

2 Related Work
2.1 Usability of Hierarchies from a User-oriented Perspective

Organizing resources into a hierarchical structure for subject browsing has been 
recognized as an important tool in information-seeking processes (Golub & Lykke, 
2009). A hierarchy can offer searchers information on the collection being searched 
before any interaction happens. Chen et al. (2012) explored Web resource 
organization structures based on open-access Web FTP sites. They found that users 
usually have an upper limit for the depth of the hierarchical structures when 
organizing resources. With the increasing amount of resources, users preferred to 
have a flatter structure instead of a deeper one. According to the study, structural 
complexity needs to be controlled. 

Tags are non-hierarchical keywords given by different users to describe 
information resources. Although unavoidably noisy and ambiguous, these tags 
reflect the context of the resource domain and the evolution of the knowledge. Thus 
tags have been widely used in digital resource retrieval, classifications, and 
summarization. The relationships between tags also facilitate peoples’ understanding 
of the knowledge of the resource domain. Some studies have tried to generate 
taxonomies by finding “is-a” or “a-part-of” relationships among concept tags (Si, 
Liu, & Sun, 2010; Tsui et al., 2010, Verma et al., 2015). Many tags were removed 
if they were not taken as concepts. Naturally, these taxonomies were not suitable 
for the purpose of navigation. On the other hand, other studies aimed to develop 
more loosely structured hierarchies for the purpose of navigating through a large 
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number of resources (e.g. Candan, Di Caro, & Sapino, 2008; Helic et al., 2010; 
Heymann, & Garcia-Molina, 2006; Huang et al., 2013; Sinclair & Cardew-Hall, 
2008). These hierarchies usually involved various tags and were more practical 
when users were not familiar with the resource domain. This study belongs to this 
stream and goes further on semantic coherence and structural balance of the 
hierarchy for the purpose of navigation.

2.2 Methods for Constructing Tag Trees

Two aspects are important in developing a tag tree: selecting quality tags as nodes 
of the hierarchy and inferring reasonable parent-children relationship among the 
selected tags.

An empirical study on complex dynamics of tagging systems (Halpin, Robu, & 
Shepherd, 2007) has shown that consensus around stable tag distributions and 
shared vocabularies did exist, even if there was no central controlled vocabulary. 
It is suggested that the popular tags used by different people were valuable in 
understanding a given domain. Therefore many studies used tag frequency as a 
simple but effective tag selection criterion (e.g. Strohmaier, Körner, & Kern, 2012; 
Suchanek, Vojnovic, & Gunawardena, 2008). 

The hierarchy generation methods need to detect the hidden relationships among 
tags and organize them to represent the resource domain. The previous approaches 
proposed in the literature include three types: (1) developing heuristic rules based 
on natural language processing (NLP) (Tsui et al., 2010); (2) depending on a 
thesaurus such as Wordnet (Verma et.al., 2015); and (3) using unsupervised methods 
(Gemmell et al., 2008; Huang et al., 2013; Heymann, & Garcia-Molina, 2006; Luo, 
& Chen, 2013; Si, Liu, & Sun, 2010; Zhou et al., 2007). The first two types have 
limitations in some circumstances because of manual cost or the scope of thesauri.

Among the unsupervised methods, hierarchical clustering-based methods 
(Begelman, Keller, & Smadja, 2006; Gemmell et al., 2008; Zhou et al., 2007) and 
tag generality-based methods (Heymann, & Garcia-Molina, 2006; Luo & Chen, 
2013) were widely used. Clustering-based methods iteratively partitioned the tags 
into groups and built the tag tree using either bottom-up or top-down approaches. 
In contrast generality-based methods first ranked the tags by their generality in a 
flat tag network and then added a tag as a child of its most similar tag that had 
already existed in the hierarchy. A typical problem in clustering-based methods is 
the interpretability of a node’s label. Although related tags were hierarchically 
clustered, it was difficult to determine which one would represent a category 
naturally. The generality-based methods were mainly derived from the idea of 
Heymann and Garcia-Molina (2006), who proposed a simple, efficient algorithm 
for converting a large set of tags into a navigable tag tree (Camiña, 2010).
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According to Heymann and Garcia-Molina (2006), tags were first linked in an 
undirected graph if their similarity is above a predefined similarity threshold. They 
were then ranked in descending order by their generality, and these ranked tags were 
added to the tree through comparing their similarity with the present tags in the tree. 
Note that, in their study, generality of a node was defined as its centrality in a 
network, which implied the capability of a node to associate with others. The more 
nodes a tag associates with, the more generality it has. As a result, these methods 
tried to arrange the nodes of higher generality close to the root when constructing 
a tag tree. In Helic et al. (2011) and Strohmaier et al. (2012)’s evaluation, the 
generality-based methods, DegCen/Cooc and ClosCen/Cos, outperformed the 
clustering-based ones from semantic and navigational perspectives.

I n generality-based methods, tag networks could be built based on tag similarity 
(Heymann & Garcia-Molina, 2006) and co-occurring frequency (Benz et al., 2010), 
denoted as Cos and Cooc, respectively; the generality of a tag could be measured 
by its closeness or degree centrality in the network, represented as ClosCen and 
DegCen. According to Helic et al. (2011) and Strohmaier et al. (2012), the 
performance of DegCen/Cooc and ClosCen/Cos had no significant difference. 
However, the DegCen/Cooc combination has a lower computing cost and therefore 
is more practical. In this case, this study adopted DegCen/Cooc combination 
as baseline.

2.3 Issues with Semantic Drift and Structural Skew

Although Heymann’s algorithm and its variations of other studies were considered 
effective in the above evaluation experiments, there are two issues that have not 
been solved by either DegCen/Cooc or ClosCen/Cos. 

Semantic drift Semantic drift refers to the phenomenon that the semantics of 
nodes along a path are not coherent; for example, “education->tools->design-
>blog->business->marketing”. It is strange to reach marketing through design and 
tools. The semantic drift is obviously detrimental to navigation.

One possible reason for this problem is that the similarity between a child and 
its parent is not the global optimal value in Heymann’s algorithm. Markines et al. 
(2009) noticed this issue in their qualitative evaluation. In the study of Tsai et al. 
(2009), the combination of the proposed sibling independence rule and the 
hierarchical feature was close to a solution to prevent semantic drift from happening, 
yet they did not test semantic coherence in their experiment. In our previous study 
(Luo & Chen, 2013), we have proposed a hybrid method combining clustering and 
generality, aiming at the semantic coherence inside a sub-tree. However, that work 

  The path was taken from a tree generated with Heymann’s algorithm on Social-ODP-2k9 dataset (Luo & 
Chen, 2013).
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did not consider the representativeness of nodes when deciding siblings for a parent. 
In the current study, we consider representativeness to keep the diversity among 
sibling nodes of one parent. This is also a complement to avoid semantic drift. 

Structural skew The methods have a risk of structural skew since there is no 
measure to control the structural balance between branches. When the distribution 
of tags’ similarity relationships is uneven, this method may result in extremely deep 
paths and dense branches. According to Wiesman, van den Herik, and Hasman 
(2004), a hierarchical structure could create usability problems if the breadth and 
depth of the structure is not well designed. A searcher needs to be able to understand 
the relationship being presented along the structure to avoid any potential confusion. 
Song, Qiu, and Farooq (2011) have proposed the idea that the optimal position for 
a tag in a tree should minimize the change of the current tree in its depth and breadth 
growth. In Heymann and Garcia-Molina’s approach (2006), if a tag was not similar 
to an existing tag in the tree above a certain threshold, it would be taken as a child 
of the root. In some cases, many trivial nodes are set right under the root. Such a 
structure is harmful to navigation. 

3 Rationale for the Proposed Approach
3.1 Desired Features of a Hierarchy for the Purpose of Navigation

The tag tree constructed by the proposed method is supposed to be a user-friendly 
navigable tool as well as a domain knowledge markup tool. When exploring in a 
tag tree, users will always track along the paths that most likely lead them to find 
their desired information. Thus in each decision, they would take the branch whose 
name most closely meets their search intention. If none of the names indicates a 
feasible direction, they probably roll back to an ancestor and restart from another 
branch, or just abandon the exploration. 

Based on the above understanding, we define several desired features: 
1). The nodes in the tree should be representative. A tag is selected as a node in 

the tree if, (a) it can represent a group of similar tags in terms of meaning; and (b) 
it has the capability to associate many other nodes in terms of its role in the network.

According to the selection, all the tree nodes collectively will represent the main 
content of the resource domain as complete as possible. The meaning of sibling 
nodes should have the least overlap. The judgement cost for users is thus lowered 
when they face multiple choices. This idea is borrowed from the field of search 
engines, where diversified retrieval results are kept to illuminate a searcher’s vague 
searching intention (Agrawal et al., 2009; Carbonell & Goldstein, 1998; Rafiei, 
Bharat, & Shukla, 2010). The detailed implementation is shown in Algorithm 1 of 
Section 4.



Journal of Data and Information Science Vol. 2 No. 2, 2017

62

Research Paper

Journal of Data and 
Information Science

2). The relationship between nodes should be reasonable and intuitive. This 
means that the semantic meaning along a path keeps coherent with as little drift as 
possible. In addition, the meaning from parent nodes to their children should be 
increasingly fine-grained. 

For arbitrary node ti, i denotes the depth of the node in the tree, and its siblings 
compose set Bi = {b0

i, b1
i, …bl

i,…, bs
i}, l∈[0, s]. The path from root to ti is represented 

as root→t1→t2→…→ti. For example in Figure 1, the path of a node t3
 is root→

t1→t2→t3.
To keep semantic coherence, the similarity between the nodes in level j (j ∈

[1, i-1]) with ti is: 

 sim(t j, ti) ≥ sim(bl
j, t i), where l ∈ [0, s], j ∈ [1, i-1]. (1)

Equation (1) denotes that the similarity between ti
 and its ancestor t j should be no 

less than that of the sibling of t j with t i. In Figure 1, take t3 as an example, the 
similarity between t3 and t1 is bigger than t3 with each member of B1. So is t3 and t2 
with t3 and B2. This criterion ensures semantic coherence not only along a top-down 
path, but also among the range of children sets to their parents. 

In order to enhance the navigability of the tag tree, representative nodes need to 
be selected by similarity and generality.

root

t1b1
1  b1

b2
2 t2  b2

t3

b1
2

Figure 1. An example of a tag tree. Users track along the paths that most likely lead them to fi nd their desired 
information by the meaning of nodes. Thus semantic coherence along a path is important for a navigation 
hierarchy.

3). The structure is desired to have a relative balance between breadth and depth, 
as well as a balance of density of each branch. 

In an extremely dense or deep hierarchy, users will have to spend considerable 
time deciding the exploration path. To solve this problem, in this study, the structural 
balance is controlled by specifying the maximum number of children for each parent 
by their generality scores. k may vary for different tag datasets, and an empirical 
value can be estimated in our previous study on the structure patterns of Web 
resources’ hierarchical organization by the amount of nodes (Chen et al., 2012). 
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3.2 Measurement of Nodes and Edges in a Tag Network

Given a resource set R, there is a set of associated tags T. The similarity of two 
tags can be calculated by the cosine of the two vectors. If two tags have been used 
together in annotating a resource, they probably have a certain association with each 
other. The higher frequency of their co-occurrence, the stronger their relationship 
is. If the similarity or co-occurrence frequency of two tags is bigger than the given 
threshold, there is an edge between them. Thus, the tags form a weighted graph. 
Heymann and Garcia-Molina (2006) built their tag network by tag similarity, and 
Benz et al. (2010) by co-occurrence.

In this article, a tag network was built by co-occurrence in order to compare with 
the well-established solution DegCen/Cooc, according to Helic et al. (2011) and 
Strohmaier et al. (2012). And the generality of a tag was measured by h-degree. 

In a weighted network, the h-degree of a node is defined as h if h is the largest 
natural number such that the node has at least h links each with strength at least 
equal to h (Rousseau & Zhao, 2015; Zhao, Rousseau, & Ye, 2011). The h-degree is 
considered more suitable for weighted networks than indicators based on the 
underlying unweighted network, for example, degree, since it reflects more 
information about the links’ strength and structure. 

Given a tag t, if at most h of its neighbours co-occur(s) with t at least h times 
each, the h-degree of t is h. Its neighbours are sorted in descending order by their 
co-occurrence frequency with t, and then t’s h-degree is identified. The higher 
h-degree t has, the more popular implication it has. 

The difference between h-degree and degree centrality is that the former measures 
the generality of a node from its salient semantics while the latter just counts all 
co-occurrence between t and other tags regardless of whether the co-occurrence was 
caused by individuality. Considering the pervasive individuality in social annotation 
circumstances, we believed h-degree could better detect salient generality. In the 
experiment in Section 5.2, we will compare h-degree with degree centrality in their 
effectiveness in nodes selection.

Representativeness in Feature (1) in Section 3.1 is different from the generality. 
It is determined by generality and similarity in the proposed method. Nodes of high 
representativeness will be assigned close to the root. Yet a general node is not 
necessarily representative if it is very similar to an existing representative node. 

4 Algorithm for Constructing Tag Trees

The basic idea of the proposed algorithm is as follows. First, the nodes are divided 
recursively to at most k smaller groups. Each group is associated with a selected 
representative node at a particular level by global optimal comparisons. The grouping 
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helps to keep the semantic coherence along a path since the nodes most similar to 
their representative node are kept in the same sub-tree. The hierarchy is then 
developed bottom-up by assigning nodes to their most similar representative nodes, 
the root of a sub-tree. If the generality of a node is larger than the sub-tree root, the 
node will be discarded to keep the path gradually refined. 

4.1 Selecting Representative Tags from T

Selecting the representative nodes involves the judgement of both similarity and 
generality. Initially, the node of max generality is chosen from a given tag set, and 
the rest of the nodes are punished according to their similarity to it. The punishment 
is to keep diversity among siblings and avoid overlapping semantic boundary in 
each level, as discussed in Feature (1) in Section 3.1.

Algorithm 1. Get representative nodes from tag set L.

Function GetRepresent ( L, k, λ )
1. Initialize A = Φ, m = |L|, T = L, and L is tag set {t1,…,tm}; 
2.  Get generality for each tag t in T by calling function Ge(t), and store them in an array D;
3. k = k>m?m:k;
4. for i = 1:k
5.   select the tag tmax from T which has the maximal value in D;
6.   A = A∪tmax, T = T / tmax;  //Add tmax to A and remove tmax from T
7.   for j = 1: |T|
8.      D[tj] = D[tj] – λ*sim(tmax,tj)*D[tmax];  //As a punishment, lowering down the nodes’ 

generality according to their similarity to the selected node tmax.
9.   end for
10. end for
11. return to A;

In Algorithm 1, L is the initial input tag set; k is a pre-defined maximum number 
of child nodes under a particular parent; and λ denotes the punishment factor based 
on similarity. The selected representative nodes will be put into set A as output, 
which is initially empty. 

At first, the input tag set L is assigned to T. The function Ge(t) gets generality 
for each tag in T and stores them in an array D. The generality refers to the degree 
centrality or h-degree of a tag in the discussed network. The tag of maximum 
generality selected in Line 5 is moved from T to the representative node set A in 
Line 6, and T shrinks gradually. In Line 7 to Line 9, the remaining nodes in T are 
punished based on their similarity to the selected representative node. In each 
iteration, at most k representative nodes are selected.

4.2 Constructing Tag Trees

In Algorithm 2, p is the pointer to parent node; L, k, and λ have been introduced 
in Algorithm 1. The tree is built bottom-up by recursively assigning nodes to its 
similar representative node.
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Algorithm 2. Construct a tag tree.

Function ConstructTree (p, L, k, λ )
1. A = GetRepresent( L, k, λ );
2. n = |A|; m = |L|    // n,m is the number of elements in A,L separately.
3. if n = 0 return to p;
4. L1={}, L2={}, …, Ln={};
5. for i=1:m
6.   if (L[i] in A) continue;
7.   j = MaxSimIndex(A , L[i] );   // get the index of the most similar tag in A for L[i].
8.   if (Ge(L[i])>Ge(A[j]) ) continue;  // Ge() is the function of generality.
9.   Lj = Lj∪L[i];  //group element L[i] to subset Lj, which associates with A[j].
10. end for
11. for i=1:n
12.   build a node c for tag A[i]; 
13.   s = ConstructTree(&c, Li, k, λ); 
14.   add s as a child of p;
15. end for
16. return to p;

In each iteration, the representative tags (at most k) are selected from L to A in 
Line 1. The remaining nodes are divided into groups based on their similarity to 
nodes in A from Line 7 to Line 9. A sub-tree is built from the nodes of the group, 
and added to its representative node as its children in Line 11 to Line 15.

If the generality of a node L[i] is bigger than that of the representative node A[i], 
it will be discarded and will not be taken as a descendant node of A[i], see Line 8. 
This is to ensure the increasingly fine-grained parent-child relationship, discussed 
as Feature (2) in Section 3.1. The downside is that some non-representative nodes 
might be absent from the hierarchical structure. One solution could be first 
maintaining a list with the discarded nodes, then rerunning the algorithm and 
organizing them into an additional hierarchy that is then appended to the root as 
additional branches of the folksonomy.

The tag similarity comparison has been involved in Line 7 of Algorithm 2 and 
Line 8 in Algorithm 1. Cosine similarity is applied to tag frequency vectors to 
compare their relationships.

5 Evaluation
5.1 Dataset and Benchmark

The experiment was conducted using dataset PINTS published by Görlitz Olaf. 
It originally contains 532,924 users, 2,481,698 tags, 17,262,480 resources, and the 
number of the triples of < user, resource, tag> is 140,126,586. To avoid sparse data 
space, the dataset was filtered to satisfy the three requirements: tuples containing 

  https://west.uni-koblenz.de/en/forschung/datensaetze/pints-experiments-data-sets
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only English character tags; each tag being used by at least 30 different users; and 
each resource containing a tag that at least 30 different users have used. These 
criteria roughly ensure each tag is meaningful and each resource is tagged by at 
least one well-accepted tag. After the filtering, there are 52,374,650 tuples, including 
20,194 tags and 86,465 resources.

Baseline algorithm HTT The baseline algorithm was derived from Heymann 
and Garcia-Molina (2006), and thus it is denoted as Heymann Tag Tree (HTT). The 
proposed algorithm in this study is denoted as Navigation-Oriented Tag Tree (NTT). 
For comparison, we followed the conclusion in Helic et al. (2011) and Strohmaier 
et al. (2012). In their study, navigability and semantics have been comprehensively 
evaluated using a series of state-of-arts folksonomy generation approaches, including 
hierarchical clustering methods and generality-based methods. Finally, the 
generality-based algorithm with degree centrality for generality and co-occurrence 
for tag relationships was reported as the best performance, so we implemented the 
algorithm as our baseline.

However, Helic et al. (2011) and Strohmaier et al. (2012) did not mention the 
value of a threshold, above which a link was permitted to be a child of an existing 
tag other than the root. The higher the threshold was, the more trivial nodes were 
taken as the children of the root. For detail on the function of the threshold, readers 
may refer to Section B of the origin literature (Heymann & Garcia-Molina, 2006). 
In this study, the comparison between a child and an existing tag was based on their 
co-occurrence.

To choose a reasonable threshold in HTT, the trees of HTT were built and 
compared with the ODP classification with three semantic metrics, i.e. TP, TR, F1 
(described in Section 5.2), when the threshold changed from 0 to 10 with step length 
1, and from 20 to 100 with step length 10. The results in Table 1 show that the 
difference is trivial when the threshold varies from 0 to 10 and the performance 
decreases when the threshold is getting large. Therefore, in the following experiment 
shown in Figure 2, the threshold in HTT is set to 0.

Table 1 also denotes that the TP, TR, F1 is higher when measuring the generality 
with h-degree than with degree centrality in the HTT algorithm.

5.2 Evaluation of Established Metrics

The biggest challenge in evaluating the navigation of a tag tree is the lack of a 
baseline. The difficulty is mainly because the resources may come from different 
domains, and the hierarchies can be generated for different purposes. Researchers 
compared the auto-generated tag hierarchy against those well-accepted taxonomies 
in certain resource domains, such as Wordnet, Yago, and Wikitaxonomy. (Strohmaier 
et al., 2012). In comparing taxonomy generation techniques, Camiña (2010) has 
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proposed several criteria to help develop the evaluation methodology. However, we 
need to keep in mind that taxonomy serves to represent a logical model of the 
knowledge domain with precise concepts, instances, and their relationships, rather 
than facilitating users’ browsing behavior by adapting to a given resource set. 

The baseline hierarchy is the Open Directory Project (ODP) classification 
because it has been used as a well-accepted Web page resource classification 
since being created. The evaluation metrics are from Strohmaier et al. (2012). The 
metrics were originally proposed by Dellschaft and Staab (2006). Below is a brief 
introduction of the metrics. Let AT denotes the automatically generated tag tree, and 
RT denotes the baseline taxonomy. CAT and CRT are the sets of nodes’ names (i.e. 
tags) in the tree AT and RT. For each c∈CAT∩CRT, the set ce(c, AT) denotes the names 
of c’s ancestors and descendants from the root to leaves in tree AT. Similarly, ce(c, 
RT) refers to their names in RT.

Each c in AT has tp for the precision of the node with regard to RT, and tr for the 
recall. In addition, TP (Taxonomic Precision), TC (Taxonomic Recall), and F1 
(Taxonomic F1) measure the average resemblance between the generated hierarchy 
and the baseline taxonomy. 

Table 1. The semantic evaluation results of different similarity threshold setting values in HTT.

Threshold
Degree centrality h-degree

TP TR F1 TP TR F1

0 0.0448 0.0368 0.0404 0.0509 0.0405 0.0451 
1 0.0448 0.0368 0.0404 0.0509 0.0405 0.0451 
2 0.0448 0.0368 0.0404 0.0509 0.0405 0.0451 
3 0.0448 0.0368 0.0404 0.0510 0.0405 0.0451 
4 0.0448 0.0368 0.0404 0.0510 0.0405 0.0451 
5 0.0448 0.0368 0.0404 0.0509 0.0404 0.0451 
6 0.0448 0.0368 0.0404 0.0509 0.0404 0.0451 
7 0.0447 0.0367 0.0403 0.0509 0.0404 0.0450 
8 0.0446 0.0365 0.0402 0.0508 0.0402 0.0449 
9 0.0445 0.0365 0.0401 0.0507 0.0402 0.0448 
10 0.0443 0.0364 0.0400 0.0506 0.0401 0.0447 
20 0.0417 0.0339 0.0374 0.0479 0.0376 0.0421 
30 0.0382 0.0309 0.0342 0.0446 0.0346 0.0389 
40 0.0344 0.0273 0.0305 0.0406 0.0310 0.0351 
50 0.0316 0.0249 0.0279 0.0378 0.0286 0.0325 
60 0.0298 0.0232 0.0261 0.0360 0.0267 0.0307 
70 0.0279 0.0218 0.0245 0.0343 0.0252 0.0290 
80 0.0264 0.0205 0.0231 0.0328 0.0238 0.0276 
90 0.0252 0.0198 0.0222 0.0319 0.0230 0.0268 
100 0.0241 0.0187 0.0211 0.0308 0.0221 0.0257 

  http://www.dmoz.org/
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Given node c∈CAT ∩ CRT,
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For the whole tree AT, TP, and TR are based on the contribution of tp and tr from 
each c.
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5.2.1 HTT vs. NTT Algorithms 

We calculated the TP, TR, and F1 metrics against the ODP classification for both 
HTT and NTT. In Figure 2, the left part is the results using degree centrality for 
generality, and the right part is those of h-degree. The x-axis denotes punishment 
parameter λ in the proposed algorithm, and the vertical axis of each line of diagram 
represents TP, TR, and F1, respectively. The bar in position 0 on the x-axis of each 
diagram represents the value of HTT algorithm, and the other following positions 
demonstrate the values of NTT algorithm with different λ values. When λ changes 
from 0.1 to 1.0, there are 10 groups of bars. In each group, the bars from the left to 
the right show the effects of structural controlling parameter k, i.e. the TP or TR or 
F1 when k is assigned as 10, 20, 30, 40, and 50.

Since a tag might be found in multiple ODP branches (e.g. the tag “Sports” 
appears in both paths “Arts/Movies/Genres/Sports” and “Business/Arts_and_
Entertainment/Sports”), the final tp value of a tag is the average of the tp values of 
all the paths. So is tr. 

The TP values of h-degree are higher than those of degree centrality, which means 
the h-degree is superior to degree centrality as a node generality metric. When the 
structure parameter k is set from 30 to 50, the results of TP, TR, and F1 are far better 
than those of when k is 10 or 20. In addition, when λ is 0.4, the TP value of NTT 
reaches its highest point no matter with degree centrality or h-degree. 
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Figure 2. Reference-based evaluation results using NTT algorithm with degree and h-degree. The left part is 
the results using degree centrality for generality, and the right part is those using h-degree. The x-axis denotes 
punishment parameter λ and the vertical axis represents the value of TP, TR, and F1, respectively. The bar in 
position 0 on the x-axis of each diagram represents the value of HTT algorithm, and the other following groups 
on the x-axis demonstrate the values of NTT algorithm with different punishment parameter λ (λ = 0.1 to 1.0) 
values. In each group, the bars from the left to the right show the TP/TR /F1 value of structural controlling 
parameter k (k = 10, 20, 30, 40, and 50). When the conditions of NTT were set to h-degree with parameters 
λ = 0.4 and k = 30, the TP, TR, and F1 of the proposed algorithm reached the relative best.
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Since the F1 value of NTT reaches its maximum when λ = 0.4 and k = 30, the 
conditions of NTT are set to h-degree with parameters λ = 0.4 and k = 30 by default 
in this experiment dataset. Under this condition, the TP of NTT is much higher than 
that of HTT, suggesting a better overlap with the ODP paths, which is likely due to 
the consideration of the semantic coherence in NTT.

5.2.2 Degree and h-degree Generality Metrics

Figure 2 also shows the comparison of degree and h-degree. In HTT’s TP, TR, 
and F1 results shown on x = 0 in each diagram, the h-degree leads to higher values 
in the right part of diagrams than their left counterparts which use degree centrality. 
Similar results are observed in NTT results (λ = 0.4 and k = 30) of each diagram 
pairs. 

The possible reason why h-degree is superior to degree centrality is that the 
former concentrates more on semantic meaning than the latter. Although the degree 
centrality illustrates the width of the node association, it does not indicate the tag’s 
meaning concentration as the h-degree does. Thus h-degree suits the task of 
representative nodes selection.

What should be noted for the purpose of navigation is that precision is more 
important than recall. The reason is that precision reflects both the semantic and 
structural features of a tag tree, which is essential to the users. Although the TR and 
F1 were calculated in this experiment, they were not taken as critical criteria of the 
algorithm performance for the following reasons: (1) the paths in NTT are generally 
shorter than those in HTT because of the structure control; and (2) some nodes have 
been removed when building NTT to keep the gradually refined meanings along a 
path (see Line 8 in Algorithm 2 and its explanation in Section 4.2). Both of the 
reasons have an effect on TR, and as a result on F1.

Finally, the reason why the values of TP, TR, and F1 are in small scale is mainly 
that the node names of the experiment dataset are not the same with the category 
labels in ODP after all. For example, the overlap nodes is 6,053 between the ODP 
and the NTT tree which was built in default condition of this experiment, i.e. 
h-degree with parameters λ = 0.4 and k = 30.

5.3 Application Illustration 

Two visualized fragments of NTT and HTT are illustrated in Figures 3 and 4. The 
structure of the HTT tree is not balanced as well as is the NTT tree. For example, 
at the second level under the root, almost all the tags were considered more similar 
to the node “software” than “buptsse” by the HTT algorithm. However, in NTT tree, 
tags were more evenly distributed into different parents to avoid the structural skew.
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 Figure 3. Fragment of NTT tree.

In addition, the algorithm of HTT is likely to lead to semantic drift. For example, 
the tags “news,” “games,” and “health” in the HTT tree are located respectively in 
the path of “/software/tools/web/design/blog/news,” “/software/tools/web/design/
cool/fun/games” and “/software/tools/productivity/lifehacks/health.” If users want 
to look for resources of news, they will never expect to start from “software” to 
locate these tags. The problem of semantic drift may hurt the navigability of the 
hierarchy. However, in the NTT hierarchy, the same tags “news,” “games,” and 
“health” are not under a particular parent according to their representativeness. 
Instead, they act as heads of a group of branches and are listed directly under the 
root node, which is easier for users to find.

6 Conclusions and Suggestions for Future Work

This study proposed an algorithm for developing a navigation-oriented tag tree 
from a tag dataset. The goal of the algorithm is to build a tree characterized by: (1) 
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the ancestors should be more representative than the descendants; (2) the semantic 
meaning along the node paths needs to be coherent; (3) the children of one parent 
are collectively exhaustive and mutually exclusive in describing their parent; (4) 
last but not least, tags are roughly evenly distributed to their upper-level parents to 
avoid structural skew. The proposed algorithm as well as the h-degree metric has 
been compared with a well-established solution HTT based on the ODP classification. 
In the experiments of current study, the NTT with its default condition outperformed 
HTT. The results suggested a practical, navigation-oriented tag tree, which may 
facilitate people to hit their targets.

The proposed algorithm will benefit the development of resource navigation 
systems. It can also be used in managing different online resources, such as academic 
publications, government documents, and medical communities based on a navigable 
hierarchy.

Figure 4. Fragment of HTT tree.
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What should be highlighted is that the algorithm can be extended to applications 
in multiple resource domains to generate a flexible domain knowledge structure that 
is easy to navigate. Easy navigation is possible because the tags mentioned in the 
algorithm can be not only the social annotations, but also keywords created by 
authors or experts, as well as automatically extracted from text. 

We did a preliminary evaluation in this study. More details are expected on the 
usability of the hierarchy. As our future work, a thorough investigation into the 
evaluation methodology is needed, including user studies and comprehensive 
metrics for navigation performance. 
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