Modern Technology for Prevention of Sudden Cardiac Death – a Clinical Update on Device Therapy in Children with Congenital Heart Diseases

Open access


Sudden cardiac death in children is one of the most devastating conditions that can be encountered in acute cardiac care. Intracardiac device therapy, providing prompt and effective treatment in malignant ventricular arrhythmia or in severe conduction abnormalities, is a promising tool to reduce the incidence of this fatal condition. However, the implementation of device-based therapy in the pediatric population is currently limited by the lack of clinical studies on large number of subjects. As a result, indications for device therapy in pediatric patients are still unclear in many circumstances. There are also several particularities related to device implantation in pediatric age, such as the somatic growth leading to a mismatch between chamber size and lead length, or the difficulties of implantation technique in children with small body weight. This study aims to present an update on the current advantages and limitations of device-based therapy for treating severe malignant arrhythmia or conduction disorders in children at risk for sudden cardiac death.

1. Chubb H, O’Neill M, Rosenthal E. Pacing and Defibrillators in Complex Congenital Heart Disease. Arrhythm Electrophysiol Rev. 2016;5:57-64. doi:

2. Sumitomo N. Device therapy in pediatric and congenital heart disease patients. Journal of Arrhythmia. 2014;30:428-432.

3. Jin BK, Bang JS, Choi EY, et al. Implantable cardioverter defibrillator therapy in pediatric and congenital heart disease patients: a single tertiary center experience in Korea. Korean J Pediatr. 2013;56:125-129. doi:

4. Bogush N, Espinosa RE, Cannon BC, et al. Selecting the right defibrillator in the younger patient: Transvenous, epicardial or subcutaneous? Int J Cardiol. 2018;250:133-138. doi:

5. Hofferberth SC, Alexander ME, Mah DY, Bautista-Hernandez V, del Nido PJ, Fynn-Thompson F. Impact of pacing on systemic ventricular function in L-transposition of the great arteries. J Thorac Cardiovasc Surg. 2016;151:131-139. doi:

6. Singh HR, Batra AS, Balaji S. Cardiac Pacing and Defibrillation in Children and Young Adults. Indian Pacing Electrophysiol J. 2013;13:4-13.

7. Clarke TSO, Zaidi AM, Clarke B. Leadless Pacemakers: practice and promise in congenital heart disease. Journal of Congenital Cardiology. 2017;1:4.

8. Jordan CP, Freedenberg V, Wang Y, Curtis JP, Gleva MJ, Beril CI. Implant and Clinical Characteristics for Pediatric and Congenital Heart Patients in the National Cardiovascular Data Registry Implantable Cardioverter Defibrillator Registry. Circ Arrhythm Electrophysiol. 2014;7:1092-1100. doi:

9. Toganel R, Muntean I, Duicu C, et al. The role of eNOS and AGT gene polymorphisms in secondary pulmonary arterial hypertension in Romanian children with congenital heart disease. Revista Romana de Medicina de Laborator. 2013;21:267-274. doi:

10. Chiu SN, Huang SC, Wang JK, et al. Implantable cardioverter defibrillator therapy in repaired tetralogy of Fallot after pulmonary valve replacement: implications for the mechanism of ventricular arrhythmia. Int J Cardiol. 2017;249:156-160. doi:

11. Atallah J, Erickson CC, Cecchin F, et al. Multi-Institutional Study of Implantable Defibrillator Lead Performance in Children and Young Adults. Results of the Pediatric Lead Extractability and Survival Evaluation (PLEASE) Study. Circulation. 2013;127:2393-2402. doi:

12. Dechert BE, Bradley DJ, Serwer GA, et al. Implantable Cardioverter Defibrillator Outcomes in Pediatric and Congenital Heart Disease: Time to System Revision. Pacing Clin Electrophysiol. 2016;39:703-708. doi:

13. Kamp AN, Von Bergen NH, Henrikson CA, et al. Implanted defibrillators in young hypertrophic cardiomyopathy patients: A multicenter study. Pediatr Cardiol. 2013;34:1620-1627. doi:

14. Miyake CY, Webster G, Czosek RJ, et al. Efficacy of implantable cardioverter defibrillator in young patients with catecholaminergic polymorphic ventricular tachycardia: Success depends on substrate. Circ Arrhythm Electrophysiol. 2013;6:579-587. doi:

15. Lawrence D, Von Bergen N, Law IH, et al. Inappropriate ICD discharges in single-chamber versus dual-chamber devices in the pediatric and young adult population. J Cardiovasc Electrophysiol. 2009;20:287-290. doi:

16. Von Bergen NH, Atkins DL, Dick M II, et al. Multicenter study of effectiveness of implantable cardioverter defibrillators in children and young adults with heart disease. Pediatr Cardiol. 2011;32:399-415. doi:

17. Horner JM, Kinoshita M, Webster TL, Haglund CM, Friedman PA, Ackerman MJ. Implantable cardioverter defibrillator therapy for congenital Long QT syndrome: A single-center experience. Heart Rhythm. 2010;7:1616-1622. doi:

18. Alter P, Waldhans S, Plachta E, Moosdorf R, Grimm W. Complications of implantable cardioverter defibrillator therapy in 440 consecutive patients. Pacing Clin Electrophysiol. 2005;28:926-932. doi:

19. DeWitt ES, Triedman JK, Cecchin F, et al. The Dependence of Risks and Benefits in Pediatric Primary Prevention Implantable Cardioverter-Defibrillator Therapy. Circ Arrhythm Electrophysiol. 2014;7:1057-1063. doi:

20. Garnreiter JM, Pilcher TA, Etheridge SP, Saarel EV. Inappropriate ICD shocks in pediatrics and congenital heart disease patients: Risk factors and programming strategies. Heart Rhythm. 2015;12:937-942. doi:

21. Suteu CC, Muntean I, Benedek T, et al. Giant dissecting ventricular septal haematoma associated with critical congenital heart disease. Interact Cardiovasc Thorac Surg. 2016;23:837-838. doi:

22. Kwak JG, Cho S, Kim WH. Surgical Outcomes of Permanent Epicardial Pacing in Neonates and Young Infants Less than 1 Year of Age. Heart, lung and Circulation. 2018;pii:S1443-9506(18)31774-8. doi:

23. Campos-Quintero A, Garcia-Montes JA, Cruz-Arias R, Zabal- Cerdeira C, Calderon-Colmenero J, Sandoval JP. Endocardial Pacing in Infants and Young Children Weighing Less Than 10 Kilograms. Rev Esp Cardiol. 2018;71:48-61. doi:

24. Baruteau AE, Pass RH, Thambo JB, et al. Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management. Eur J Pediatr. 2016;175:1235-1248. doi:

25. Liberman L, Silver ES, Chai PJ, Anderson BR. Incidence and characteristics of heart block after heart surgery in pediatric patients: A multicentre study. J Thorac Cardiovasc Surg. 2016;152:1-6. doi:

26. Lau KC, Gaynor JW, Fuller SM, Smoots KA, Shah MJ. Longterm atrial and ventricular epicardial pacemaker lead survival after cardiac operations in pediatric patients with congenital heart disease. Heart Rhythm. 2015;12:566-573. doi:

27. Balaji S, Sreeram N. The development of pacing induced ventricular dysfunction is influenced by the underlying structural heart defect in children with congenital heart disease. Indian Heart Journal. 2017;69:240-243. doi:

28. Friedberg MK, Schwartz SM, Zhang H, et al. Hemodynamic effects of sustained postoperative cardiac resynchronization therapy in infants after repair of congenital heart disease: Results of randomized clinical trial. Heart Rhythm. 2017;14:240-247. doi:

29. Mulpuru SK, Madhavan M, McLeod CJ, Cha YM, Friedman PA. Cardiac Pacemakers: Function, Troubleshooting, and Management. J Am Coll Cardiol. 2017;69:189-210. doi:

30. Bordachar P, Marquie C, Pospiech T, et al. Subcutaneous implantable cardioverter defibrillators in children, young adults and patients with congenital heart disease. Int J Cardiol. 2016;203:251-258. doi:

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 18
PDF Downloads 27 27 16