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acute coronary syndromes

Coronary artery disease (CAD) is one of the leading causes 
of death worldwide, responsible for the death of millions 
every year.1 World Health Organization (WHO) statistics 
show that in 2012, 31% of all deaths were caused by car-
diovascular disease, from which 7.4 million were due to 
coronary heart disease.2 Acute coronary syndromes (ACS) 
are among the most severe complications of atheroscle-
rosis, and the majority, although not all, take place due 
to atheromatous plaque rupture and subsequent throm-
bosis.3 

Vulnerable atheromatous plaques

The genesis of the atheroma is triggered by the appear-
ance of a discontinuity in the endothelial layer, followed 
by an array of complex mechanical, biochemical, and bi-
ological mechanisms that will eventually lead to plaque 
formation.4–6 The formed atherosclerotic plaque will 
undergo several pathophysiological changes, including 
the excessive accumulation of oxidized LDL-cholesterol, 
enhanced local inflammation, smooth muscle cell prolif-
eration, and extracellular matrix degradation, which will 
eventually lead to its progression and destabilization.7  
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ABSTRACT

Coronary artery disease represents one of the leading reasons of death worldwide, and acute 
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be achieved using noninvasive imaging techniques. Coronary computed tomography angiog-
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artery tree based on CT angiography images. A detailed inventory of existing methods is given, 
representing the state-of-the-art of computational methods applied in vascular system seg-
mentation, focusing on the current applications in acute coronary syndromes. 
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In an attempt to define the complications related to ath-
erosclerotic plaques and to find the pathophysiological 
mechanism of acute coronary syndromes, the concept of 
“vulnerable plaque” was developed.8 The definition of the 
vulnerable coronary plaque comprises an increased pro-
pensity towards rupture, erosion, and thrombosis.9,10 

A vulnerable plaque is described as having a thin fibrous 
cap and a large necrotic lipid core that initially causes 
an eccentric vascular remodeling (positive remodeling) 
followed by luminal stenosis and impaired distal blood 
flow.11–13 Other features of unstable coronary lesions in-
clude an increased local inflammation,14 extracellular ma-
trix degradation,15 neo-vessel formation within the plaque 
with subsequent hemorrhage,16,17 as well as calcium for-
mation in the form of spotty calcifications.18 

Even though the most common fate of an unstable 
plaque is to rupture, a significant percentage of acute 
coronary syndromes were shown to be caused by coro-
nary plaque erosion.19 Lesions that suffer erosions seem 
to not show the established characteristics of a vulnerable 
plaque, usually presenting a thick cap, decreased necrotic 
cores and lower inflammation degree.20 Thus came the 
idea that a vulnerable plaque is not as much prone to rup-
ture, but more prone to causing an acute event.21 

Shear stress and vulnerable plaques

The complex pathophysiological mechanism of atheroscle-
rosis includes, besides progressive endothelial injury, local 
inflammation, and vascular remodeling, also hemodynam-
ic alterations.22 It was shown that there is an increased oc-
currence of coronary plaques in vascular regions with high 
shear stress, such as bifurcations or near vascular curva-
tures.23 Also, the protrusion of the atheroma in the vessel 
lumen causes a shift from a normal, laminar flow, with 
evenly distributed transverse and shear stress, to a tur-
bulent flow.24 Coronary shear stress (CSS) has been shown 
to influence the progression of coronary plaques by caus-
ing structural and functional changes in the endothelium, 
enzymatic changes, release of bioactive markers, and gene 
transcription.25,26 Low shear stress (LSS) leads to misalign-
ment of the endothelial cells, increased permeability to 
circulating lipid molecules and inflammatory cytokines, as 
well as high expression of adhesion molecules, growth fac-
tors, and high reactive oxygen species.22,27–29 In the context 
of increased systemic cardiovascular risk factors, the dys-
functional endothelium and increased inflammatory status 
augment the process of plaque growth and cause additional 
alterations of the endothelial shear stress.30 High shear 
stress exposure presents a protective effect on healthy ves-

sels, but if a stenotic lesion is present, it indorses plaque 
vulnerabilization.31 High shear stress contributes to plaque 
destabilization by increased nitric oxide expression and ex-
tracellular matrix degradation by stimulating the expres-
sion of matrix metalloproteases, increased production of 
proteolytic enzymes, and apoptosis.32–34 Furthermore, an 
increased CSS can stimulate plaque denudation and erosion, 
which, if associated with an enhanced blood thromboge-
nicity, lead to acute vessel occlusion and the occurrence of 
an ACS.21,35 Shear stress distribution across coronary ste-
notic lesions appears to be low in the distal region of the 
plaque, whilst a high stress is mainly present in the proxi-
mal part.36,37 In order to maintain the physiological shear 
stress, vascular remodeling occurs as an adaptive process,38 
thus a high CSS stimulates an outward remodeling, while a 
low CSS exposure will lead to an inward remodeling with 
vessel narrowing.39 

Methods for the assessment of 
vulnerable plaque characteristics 

There are several established methods for the assess-
ment of biomarkers characteristic for plaque instability, 
acquired with both invasive and noninvasive techniques.40 
The invasive methods include intravascular ultrasound 
(IVUS) with its different variations (virtual histology IVUS, 
iMAP IVUS, and integrated backscatter IVUS), which can 
assess with high accuracy the total plaque burden, ne-
crotic core, neo-vessel formation, calcifications, as well 
as the vessel remodeling percentage.41-43 Optical coher-
ence tomography (OCT), which uses near-infrared light 
for image acquisition, allows evaluation of the fibrous cap, 
collagen amount, neoangiogenesis, plaque rupture and 
thrombus formation; its variant, micro-OCT, is able to of-
fer a histological level of accuracy in the process of plaque 
component visualization.21,44,45 Other invasive methods 
for evaluating unstable coronary plaques include invasive 
coronary thermography (which measures plaque tem-
perature),46 near-infrared spectroscopy (NIRS – better 
visualization of necrotic cores),47 and also combinations 
of the above-mentioned methods.48,49 Coronary comput-
ed tomography angiography (CCTA) has emerged as the 
most used technique for noninvasive plaque evaluation, 
being able to identify several CT biomarkers for plaque 
instability.40 The advantages of this method are that it is 
noninvasive, it allows the visualization of the complete 
coronary tree, and it also holds the ability to analyze both 
the vascular lumen and the wall.50 Moreover, recent de-
velopments have led to an increase in image quality and 
resolution, by using multiple slice scans with ECG-gat-
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ed protocols that allow imaging acquisition in a single 
heartbeat, during diastole, thus eliminating motion arti-
facts.51,52 CCTA displays an increased rule-out capacity for 
lesion identification and quantification, and studies have 
shown that its detection accuracy is comparable to inva-
sive methods (IVUS and OCT), even if it does not hold the 
ability for fibrous cap identification.21,53,54 Major advan-
tages of the latter are: 3D data collection and visualiza-
tion, as well as information on arterial calcification and 
vascular distortion.55 The markers for plaque vulnerability 
that are identified by CCTA are the presence and size of the 
necrotic core (which appears as a hypodense area within 
the plaque),56,57 low attenuation plaques,58 positive re-
modeling (and calculation of the remodeling index),59 the 
presence of the napkin-ring sign,60 and microcalcification 
within the plaque (referred to as spotty calcifications).61,62 
CCTA is also able to evaluate the overall degree of calci-
fication of the coronary tree by using the coronary artery 
calcium score, which has been shown to have a high pre-
dictive capacity for major adverse cardiovascular events, 
being combined with traditional cardiovascular risk fac-
tors (c-statistic of 0.93).63 

Other applications of CCTA include the noninvasive 
assessment of coronary blood flow and the function sig-
nificance of coronary lesions, with the use of CT-based 
fractional flow reserve (CT-FFR),64,65 as well as the trans-
luminal attenuation gradient through a coronary ste-
nosis.66 Nevertheless, CCTA has a great potential of be-
ing integrated into computational simulation models for 
coronary flow and fluid dynamics, which will allow the 
analysis of plaque conduct in physiological and patho-
logical circumstances.21 Computational models are the 
sole methods that are currently able to integrate both the 
external (hemodynamic) and internal (characteristics of 
plaque) markers for instability in order to achieve a global 
understanding of the conditions that lead to plaque ero-
sion and rupture with the subsequent occurrence of an 
acute coronary syndrome.21,67,68 One of the most impor-
tant drawbacks of computational simulation models is the 
increased time needed for image reconstruction, but with 
recent developments, the time has been reduced from 
weeks69 to less than two hours,70 which will make it pos-
sible for computational plaque analysis to be performed as 
a part of a living vessel.21

Accurately identifying coronary plaques is challenging, 
especially when using noninvasive methods such as CCTA. 
The problems encountered in the CT analysis of coronary 
plaques include the presence of non-calcified lesions, 
small sized vessels, as well as motion artifacts that can be 
diminished by using ECG-gated CT protocols, multiplanar 

image acquisition and vessel segmentation, and vascular 
tree reconstruction techniques.71,72

Coronary tree segmentation

The segmentation of vascular trees is a widely researched 
topic. The literature includes several studies that follow 
the data-driven approach, namely they treat the notion 
of the vascular tree in a general way, as a set of inter-
connected tubular structures, with possible bifurcations 
and stenoses, but without using any anatomical informa-
tion. These studies usually concentrate on image quality 
enhancement for vessel recognition,73 accurate detection 
of bifurcations and branches,74–77 extraction of the most 
probable centerline,78,79 vessel diameter estimation,79,80 
and the identification of odd structures.81,82 Although they 
are very important in the development of useful medical 
data processing techniques, these general studies do not 
take into consideration any anatomical information of a 
chosen vessel tree.

On the other hand, the literature also includes stud-
ies on arterial tree segmentation procedures designed for 
and tested on specific arterial networks. The major part of 
such studies focuses on the coronary artery tree (CAT),83,84 
but there are several works developed for the pulmonary 
arteries,85–88 cerebral arteries,89 the carotid artery,90 and 
vessels of the retina.91,92

SEGMENTATION METHODS FOR CORONARY 
ARTERIES IN ACUTE CORONARY SYNDROMES

DATA-DRIVEN SEGMENTATION METHODS

Cimen et al.93,94 proposed a method to reconstruct 3D 
views of the CAT from 2D X-ray images based on a proba-
bilistic mixture model and maximum likelihood estima-
tion. Hu et al.95 proposed a two-step solution for the same 
problem: in a first stage they extracted artery tree bound-
aries via minimal path segmentation, then applied maxi-
mum a posteriori (MAP) reconstruction using L0-norm 
and L1-norm priors. Fallavollita and Cheriet96 provided a 
3D coronary artery reconstruction technique from reduced 
number of 2D X-ray fluoroscopy images that follows the 
non-rigid movement of arteries, significantly decreasing 
the reconstruction error.

Gülsün et al.97 employed computed flow fields to elimi-
nate shortcuts in automatically detected blood vessel cen-
terlines, and Kitamura et al.98 used a Markov Random Field 
framework and AdaBoost classifier for vascular structure 
segmentation, assisted by topological constraints in order 
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to avoid inconsistency in the vascular network. Dufour et 
al.99 combined the Hessian matrix approach and the gray-
level hit-or-miss transform to obtain vessel candidate 
pixels in CTA data, which were later classified using deci-
sion trees. Krissian et al.100 established a geodesic level set 
framework to semi-automatically detect the aorta with its 
main bifurcations and branches, extract the centerline of 
each branch, and identify the presence of aortic dissection. 
Zhou et al.83 introduced the notion of multiscale coronary 
response, a robust method designed to find coronary ar-
teries via combining 3D multiscale filtering, analysis of 
the eigenvalues of the Hessian matrices, and expectation 
maximization (EM) estimation techniques. They also em-
ployed a 3D dynamic balloon tracking method to extract 
complete artery trees. Shang et al.101 defined a vector field 
based on the eigenanalysis of the Hessian matrix and used 
it to assist a 3D active contour model in the detection of 
vascular structures.

MODEL-DRIVEN SEGMENTATION METHODS

The most part of recently developed CAT segmentation 
methods follows the model-based or the model-driven 
approach, through involving anatomical models or at-
lases to improve the segmentation accuracy. Model-based 
methods start with extracting relevant information from 
the recorded image data, but in a later processing phase 
they match the extracted information with predefined at-
lases or models.

Shin et al.102 employed a manually annotated 2D fluo-
roscopic X-ray image as reference and proposed a tech-
nique to extract coronary vessels from further images 
via vessel correspondence optimization. Liu et al.103,104 
proposed a model-guided centerline extraction method 
based on ostia detection via directional minimal paths 
and validated it on the three main branches of the CAT 
in CTA image data. Sun et al.105 deployed a previously 
recorded 3D vessel model of the same patient to track 
the position of various branches within 2D X-ray angio-
grams, using exploratory shortest paths within the graph 
model of the vessels. Medrano-Garcia et al.106 built a cor-
onary artery atlas using 122 CTA records of zero calcium 
score, providing a comprehensive and accurate assess-
ment of the anatomy, including 3D size, geometry, and 
shape descriptors.

In model-driven methods the identification of vessels 
and centerlines relies on a priori defined cardiovascular 
models. For example, the method proposed by Zheng et 
al.107 automatically segments the heart chambers and 
then uses an anatomical model to automatically track 

various branches of the CAT. The model helps the cen-
terline tracing procedure to avoid early termination at 
severe occlusions and to generate anatomically consis-
tent centerlines.

The design of the segmentation method 

The main steps of the proposed solution include prepro-
cessing, seed extraction for region growing, data-driven 
segmentation via robust fuzzy region growing, centerline 
extraction, model-based validation and vessel identifica-
tion, and post-processing.108–112

The use of CT in emergency settings and 
for acute coronary syndromes

The use of CCTA has been shown to be feasible and useful 
for patients who present in the emergency department for 
acute chest pain, but have equivocal laboratory and elec-
trocardiographic (ECG) modifications. The Rule Out Myo-
cardial Infarction/Ischemia Using Computer Assisted To-
mography (ROMICAT-I) trial included 368 patients with 
acute chest pain, normal initial troponin values, and no 
signs of myocardial ischemia on the initial ECG.113 The 
results showed that emergency CCTA had a high negative 
predictive value (100% in the absence of CAD, 98% in the 
presence of significant coronary lesions) in ruling out an 
acute coronary syndrome.113

Another trial on the use of CCTA in the emergency de-
partment (ED), which included 1,000 patients with acute 
chest pain, showed that in comparison to a traditional di-
agnostic procedure (invasive coronary angiography), the 
hospitalization index was decreased by 7.6 h (period of 
stay in the emergency department), and a significantly 
larger number of patients had been discharged straight 
from the ED (47% for CCTA vs. 12% for the invasive ap-
proach).114 

As it allows rule-out of acute pulmonary embolism, aor-
tic dissection, and acute coronary syndromes, depiction of 
the complete coronary anatomy, illustration of the coro-
nary vessel lumen, identification of vulnerable plaque fea-
tures, as well as the coronary artery calcium score, CCTA is 
a valuable method for emergency triage and patient man-
agement, for the decision-making process and prognosis 
assessment of patients with coronary artery disease, all in 
a noninvasive stand-alone procedure.55,115–117 The nonin-
vasive visualization of plaque characteristics and severity 
of the coronary artery disease in patients with non-ST el-
evation acute coronary syndromes at baseline, was shown 
to predict recurrent adverse events.118 
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CONCLUSIONS

Computational methods can be easily applied in the vas-
cular system for coronary artery tree segmentation using 
CTA image volumes. This interdisciplinary approach can 
provide a solid background for a complex assessment of 
the coronary tree, especially in settings when estimation 
of the degree of plaque vulnerability can be crucial for the 
future evolution of the patients.
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