Characterization of Native Honey Bee Subspecies in Republic of Benin Using Morphometric and Genetic Tools

Open access


Morphometric characteristics combined with genetic markers are powerful tools used for determining honey bee subspecies. Bees samples collected from 94 established apiaries distributed throughout all of the Republic of Benin were morphometricaly characterized using seven parameters and the COI-COII regions of mitochondrial DNA were sequenced. Based on the morphometric data the native honey bees could be divided into three distinct ecotypes - the Benino-dry-tropical-ecotype in the north, the Benino-Sudanian-ecotype in the central part and the Benino-Sudano-Guinean-ecotype in the south. The DNA COI-COII regions sequence analyses confirmed that the honey bee population of the Republic of Benin belongs to different mitotypes but do not correspond with the determined ecotypes. We could determine three new haplotypes which missed the P0 segment but the Q region was duplicated or triplicated. Phylogenetic analyses clustered them together in the A evolutionary lineage. In conclusion, morphometric and genetic analysis of the native West African honey bees indicated that each of the different mitotypes was able to adapt to the different ecological conditions in the country by morphometric adjustments.

Adger, W.N., Arnell, N.W., & Tompkins, E.L. (2005). Successful adaptation to climate change across scales. Global Environmental Change-Human and Policy Dimensions, 15, 77-86.

Adl, M.B.F., Gencer, H.V., Firatli, C., & Bahreini, R. (2007). Morphometric characterization of Iranian (Apis mellifera meda), Central Anatolian (Apis mellifera anatoliaca) and Caucasian (Apis mellifera caucasica) honey bee populations. Journal of Apicultural Research, 46, 225-231.

Alburaki, M., Moulin, S., Legout, H., Alburaki, A., Garnery, L. (2011). Mitochondrial structure of Eastern honeybee populations from Syria, Lebanon and Iraq. Apidologie, 42, 628-641. DOI: 10.1007/s13592-011-0062-4

Amakpe, F. (2010). The biodiversity of the honey bees (Apis mellifera adansonii) in the District of Djidja, Republic of Benin. International Journal of Environmental, Cultural, Economic and Social Sustainability, 6, 90-104. DOI: 10.18848/1832-2077/CGP/v06i06/54851

Amakpe, F., Zuber, S., & Jacobs, F.J. (2008). Role of beekeeping in the household food security and livelihoods: Implications for the sector policy development in Ethiopia. 2nd symposium University of Ghent, Gents Africa Platform.

Arias, M.C., & Sheppard, W.S. (1996). Molecular phylogenetics of honey bee subspecies (Apis mellifera L) inferred from mitochondrial DNA sequence. Molecular Phylogenetics and Evolution, 5, 557-566.

Alattal, Y., Alsharhi, M., Alghamdi, A., Alfaify, S., Migdadi, H., Ansari, M. (2014). Characterization of the native honey bee subspecies in Saudi Arabia using the mtDNA COI-COII intergenic region and morphometric characteristics. Bulletin of Insectology, 67, 31-37.

Becher, M.A., Hildenbrandt, H., Hemelrijk, C.K., & Moritz, R.F.A. (2010). Brood temperature, task division and colony survival in honeybees: A model. Ecological Modelling, 221, 769-776.

Bland, J.M., & Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1, 307-310.

Bray, J.R., & Curtis, J.T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 27, 326-349. DOI: 10.2307/1942268

Chemurot, M., Brunain, M., Akol, A.M., Descamps, T., de Graaf, D.C. (2016). First detection of Paenibacillus larvae the causative agent of American Foulbrood in a Ugandan honeybee colony. Springerplus, 5, 1090 DOI: 10.1186/s40064-016-2767-3

Chouhan, U., & Pardasani, K. (2008). A maximum parsimony model to reconstruct phylogenetic network in honey bee evolution. International Journal of Biological and Medical Research, 3, 220-224.

Clarke, K.E., Oldroyd, B.P., Javier, J., Quezada-Euan, G., Rinderer, T.E. (2001). Origin of honeybees (Apis mellifera L.) from the Yucatan peninsula inferred from mitochondrial DNA analysis. Molecular Ecology, 10, 1347-1355. DOI: 10.1046/j.1365-294X.2001.01274.x

Cornuet, J.M., & Garnery, L. (1991). Mitochondrial-DNA variability in honeybees and its phylogeographic implications. Apidologie, 22, 627-642.

Danforth, B.N., Cardinal, S., Praz, C., Almeida, E.A., Michez, D. (2013). The impact of molecular data on our understanding of bee phylogeny and evolution. Annual Review of Entomology, 58, 57-78. DOI: 10.1146/annurev-ento-120811-153633

Fazier, M., Muli, E., Conklin, T., Schmehl, D., Torto, B., Frazier, J., … Raina, S. (2010). A scientific note on Varroa destructor found in East Africa; threat or opportunity? Apidologie, 41, 463-465. DOI: 10.1051/apido/2009073

Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1-15.

Franck, P., Garnery, L., Celebrano, G., Solignac, M., Cornuet, J.M. (2000a). Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A-m. sicula). Molecular Ecology, 9, 907-921. DOI: 10.1046/j.1365-294x.2000.00945.x

Franck, P., Garnery, L., Loiseau, A., Oldroyd, B.P., Hepburn, H.R., Solignac, M., Cornuet, J.M. (2001). Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity, 86, 420-430. DOI:10.1046/j.1365-2540.2001.00842.x

Franck, P., Garnery, L., Solignac, M., & Cornuet, J.M. (1998). The origin of west European subspecies of honeybees (Apis mellifera): New insights from microsatellite and mitochondrial data. Evolution, 52, 1119-1134. DOI: 10.1111/j.1558-5646.1998.tb01839.x.

Franck, P., Garnery, L., Solignac, M., & Cornuet, J.M. (2000b). Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie, 31, 167-180.

Francoy, T.M., Wittmann, D., Drauschke, M., Muller, S., Steinhage, V., Bezerra-Laure, M.A.F., ... Goncalves, L.S. (2008). Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures. Apidologie, 39, 488-494.

Fresnaye, J. (1981). Biométrie de l’abeille. UK: OPIDA.

Gallai, N., Salles, J.M., Settele, J., & Vaissiere, B.E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68, 810-821.

Garnery, L., Cornuet, J.M., & Solignac, M. (1992). Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Molecular Ecology, 1, 145-154. DOI: 10.1111/j.1365-294X.1992.tb00170.x

Garnery, L., Franck, P., Baudry, E., Vautrin, D., Cornuet, J.M., Solignac, M. (1998). Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). I. Mitochondrial DNA. Genetics Selection Evolution, 30, S31-S47.

Garnery, L., Mosshine, E.H., Oldroyd, B.P., & Cornuet, J.M. (1995). Mitochondrial-DNA Variation in Moroccan and Spanish Honey-Bee Populations. Molecular Ecology, 4, 465-471. DOI: 10.1111/j.1365-294X.1995.tb00240.x

Garnery, L., Solignac, M., Celebrano, G., & Cornuet, J.M. (1993). A simple test using restricted PCR-amplified mitochondrial-DNA to study the genetic-structure of Apis mellifera L. Experientia, 49, 1016-1021. DOI: 10.1007/BF02125651

Garnery, L., Vautrin, D., Cornuet, J.M., & Solignac, M. (1991). Phylogenetic-relationships in the genus Apis inferred from mitochondrial-DNA sequence data. Apidologie, 22, 87-92.

Henle, K., Davies, K.F., Kleyer, M., Margules, C., Settele, J. (2004). Predictors of species sensitivity to fragmentation. Biodiversity and Conservation, 13, 207-251. DOI: 10.1023/B:BIOC.0000004319.91643.9e

Hounpke, N.U.H., Mensah, G.A., Koutinhouin, B., Pomalegni, S.C.B., Goergen, G. (2007). Characterization of honeybees in Nothern Benin. Bulletin de la Recherch Agronomique du Bénin, 58, 56-59.

Ilyasov, R.A., Poskryakov, A.V., Petukhov, A.V., & Nikolenko, A.G. (2016). New approach to the mitotype classification in black honeybee Apis mellifera mellifera and Iberian honeybee Apis mellifera iberiensis. Russian Journal of Genetics, 52, 281-291. DOI: 10.1134/S1022795416020058

Jaffe, R., Dietemann, V., Crewe, R.M., & Moritz, R.F.A. (2009). Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata). Molecular Ecology, 18, 1511-1522. DOI: 10.1111/j.1365-294X.2009.04143.x.

Javier, J.G., Quezada-Euan, J.J.G., Paxton, R.J., Palmer, K.A., Itza, W.D.M., Tay, W.T., Oldroyd BP. (2007). Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae : Meliponini). Apidologie, 38, 247-258.

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. DOI: 10.1093/molbev/msw054

Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique Et Technique, 27, 485-497, 499-510.

Magnus, R.M., Tripodi, A.D., & Szalanski, A.L. (2011). Mitochondrial DNA diversity of honey bees, Apis Mellifera L. (Hymenoptera: Apidae) from queen breeders in the United States. Journal of Apicultural Science, 55(1), 37-46.

Meixner, M.D., Leta, M.A., Koeniger, N., & Fuchs, S. (2011). The honey bees of Ethiopia represent a new subspecies of Apis mellifera-Apis mellifera simensis n. ssp. Apidologie, 42, 425-437. DOI: 10.1007/s13592-011-0007-y

Miguel, I., Baylac, M., Iriondo, M., Manzano, C., Garnery, L., Estonba, A. (2011). Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch. Apidologie, 42, 150-161.

Moritz, R.F.A., de Miranda, J., Fries, I., Le Conte, Y., Neumann, P., Paxton, R.J. (2010). Research strategies to improve honeybee health in Europe. Apidologie, 41, 227-242.

Ogbuehi, K.C., & Osuagwu, U.L. (2012). Repeatability and interobserver reproducibility of Artemis-2 high- frequency ultrasound in determination of human corneal thickness. Clinical Ophthalmology, 6, 761-769. DOI: 10.2147/OPTH.S31690

Paraïso, A., Viniwanou, N., Akossou, A.Y.J., Mensah, G.A., Aboila, W. (2011). Caractérisation morphomé- trique de l’abeille Apis mellifera adansonii au Nord- Est du Bénin. International Journal of Biological and Chemical Sciences, 5, 331-344. DOI:10.4314/ijbcs.v5i1.68109

Paraïso, A., Paraïso, G., Salako, V., Abiola, W., Kelomey, A., Glele Kakaï, R., ... Glitho, A.I. (2016). Compliance of the morphometric characteristics of Bees in Benin with those of Apis mellifera andansonii. Journal of Entomology, 14, 24-32. DOI: 10.3923/je.2017.24.32

Ruttner, F. (1988). Biogeography and taxonomy of honey bees. Berlin, Heidelberg, New York.

Ruttner, F., Tassencourt, L., & Louveaux J. (1978). Biometrical-statistical analysis of the geographic variability of Apis mellifera L.1. Material and Methods. Apidologie, 9, 363-381.

Sheppard, W.S., Rinderer, T.E., Mazzoli, J.A., Stelzer, J.A., Shimanuki, H. (1991). Gene flow between African-derived and European-derived honey-bee populations in Argentina. Nature, 349, 782-784. DOI:10.1038/349782a0

Sheppard, W.S., & Smith, D.R. (2000). Identification of African-derived bees in the Americas: A survey of methods. Annals of the Entomological Society of America, 93, 159-176. DOI: 10.1603/0013-8746(2000)093[0159:IOADBI]2.0.CO;2

Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22, 464-475.

Strauss, U., Human, H., Gauthier, L., Crewe, R.M., Dietemann, V., Pirk C.W.W. (2013). Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata). Journal of Invertebrate Pathology, 114, 45-52. DOI: 10.1016/j.jip.2013.05.003

Villières, B. (1987). L’apiculture en régions tropicales et équatoriales de l’Oest. Bulletin Technique Apicole, 14, 193-220.

Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., ... Webster, M.T. (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 46, 1081-1088. DOI: 10.1038/ng.3077

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information

IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 185 185 20
PDF Downloads 127 127 15