Effects of Lactobacillus Johnsonii AJ5 Metabolites on Nutrition, Nosema Ceranae Development and Performance of Apis Mellifera L.

Open access

Abstract

The European honey bee (Apis mellifera L.) is known to be affected by such stress factors as pathogen load, poor nutrition and depressed immunity. Nosema ceranae is one of the main parasites that affect colony populations. The relationship between the stress factors and honey bee-bacteria symbiosis appears as an alternative to enhance bee health. The aim of this study was to evaluate the effect of the oral administration of bacterial metabolites produced by Lactobacillus johnsonii AJ5 on nutritional parameters, the N. ceranae development and the performance of A. mellifera colonies. Laboratory assays were performed and demonstrated that the bacterial metabolites did not have a toxic effect on bees. Field trial showed an increase of colonies population over time. Also, a decreasing trend of fat bodies per bee was detected in all colonies but there were no evident changes on abdomen protein content at the end of the assay. Lastly, N. ceranae prevalence showed a tendency to reduce with the organic acids. Future studies should be performed to increase our knowledge of the physiological effects of bacterial metabolites on the health of bee colonies.

Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., Brillard, J., Baldy, A., Belzunces, L. P., Le Conte, Y. (2010a). Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12, 774-782. doi:

Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y. (2010b). Diet effects on honeybee immunocompetence. Biology Letters, 6 (4), 562-565.

Alberoni, D., Gaggìa, F., Baffoni, L., Di Gioia, D. (2016). Beneficial microorganisms for honey bees: problems and progresses. Applied Microbiology and Biotechnolology, 100, 9469-9482. doi:

Amdam, G. V., & Omholt, S. W. (2002). The Regulatory Anatomy of Honeybee Lifespan. Journal Theoretical Biology, 216, 209-228.

Anon (1979). BioRad Laboratories Bulletin 1069: BioRad protein assay instruction manual. BioRad Laboratories, Richmond, California, USA. 17pp.

Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., Higes, M. (2009), Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 11, 2284-2290. doi:

Arrese, E. L., & Soulages, J. L. (2010). Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology, 55, 207-25. doi:

Audisio, C. M. (2016). Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of Argentina. Probiotics and Microbials Proteins, 1-10. doi:

Audisio, M. C., & Benítez-Ahrendts, M. R. (2011). Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Beneficial Microbes, 2(1), 29-34.

Audisio, M. C., Torres, M. J., Sabaté, D. C., Ibarguren, C., Apella, M. C. (2011). Properties of different lactic acid bacteria isolated from Apis mellifera L. beegut. Microbiological Research, 1, 1-13.

Audisio, M. C., Sabaté, D. C., Benítez-Ahrendts, M. R. (2015). Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Beneficial Microbes, 25, 1-10. doi:

Baffoni, L., Gaggìa, F., Alberoni, D., Cabbri, R., Nanetti, A., Biavati, B., Di Gioia, D. (2016). Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benefical Microbes, 7(1), 45-51. doi:

Bogdanov, S. (2006). Contaminants of bee products. Apidologie, 37, 1-18.

Bowen-Walker, P. L., & Gunn, A. (2001). The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomologia Experimentalis et Applicata, 101(3), 207-217.

Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Annals of Biochemistry, 72, 248-254.

Branco, M. R., Kid, N. A. C., & Pickard, R. S. (1999). Development of Varroa jacobsoni in colonies of Apis mellifera iberica in a Mediterranean climate. Apidologie, 30, 491-503.

Brodschneider, R., & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41(3), 278-294.

Brown, M. J. F., Moret, Y., & Schmid-hempel, P. (2003). Activation of host constitutive immune defence by an intestinal trypanosome parasite of bumble bees. Parasitology, 126, 253-260.

Cantwell, G. E. (1970). Standard methods for counting Nosema spores. American Bee Journal, 110(6), 222-223.

Corby-Harris, V., Snyder, L., Meador, C. A., Naldo, R., Mott, B., Anderson, K. E. (2016). Parasaccharibacter apium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema. Journal of Economic Entomology, doi:

Corona, M., Velarde, R. A., Remolina, S., Adrienne Moran-Lauter, A., Wang, Y., Hughes, K. A., Robinson, G. E. (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. National Academy of Sciences, 104 (17), 7128-7133.

Crotti, E., Balloi, A., Hamdi, C., Sansonno, L., Marzorati, M., Gonella, E., Favia, G., Cherif, A., Bandi, C., Alma, A., Daffonchio, D. (2012). Microbial symbionts: a resource for the management of insect-related problems. Microbiology Biotechnology, 5, 307-317. doi:

de Oliveira, V. T. P., & da Cruz-landim, C. (2003). Morphology and function of insect fat body cells: a review. Biociências, 11 (2), 195-205.

Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: Nonpathogenic Interactions. Annual Review of Entomology, 49, 71-92.

Ellers, J. (1996). Fat and eggs: an alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Netherlands Journal of Zoology, 46, 227-235.

Engel, P., Martinson, V. G., Moran, N. A. (2012). Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 109(27), 11002-11007.

Evans, J. D., & Lopez, D. L. (2004). Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). Journal of economic entomology, 97(3), 752-6.

Forsgren, E., Olofsson, T. C., Vásquez, A., Fries, I. (2009). Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie, 41(1), 99-108.

Forsgren, E., Fries, I. (2010). Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Veterinary Parasitology, 170, 212-217. doi:

Fries, I. (1988). Infectivity and multiplication of Nosema apis z. in the ventriculus of the honey bee. Apidologie, 19(3), 319-328.

Fries, I. (2010). Nosema ceranae in European honey bees (Apis mellifera). Journal of Invertebrate Pathology, 103, S73-S79.

Fries, I. F., da Silva, A., Slemenda, S. B., Pieniazek, N. J. (1996). Nosema ceranae n. sp. (Microspora, Nosematidae), Morphological and Molecular Characterization of a Microsporidian Parasite of the Asian Honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 32(3), 356-365.

Gündüz, E. A., & Douglas, A. E. (2009). Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proceedings of the Royal Society London Biology Science, 276, 987-991. doi:

Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology, 92, 93-95.

Higes, M., García-Palencia, P., Martín-Hernández, R., Meana, A. (2007). Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 94, 211-217.

Higes, M., Martín-Hernández, R., Botías, C., Bailón, E. G., González-Porto, A. V., Barrios, L., del Nozal, M. J., Bernal, J. L., Jiménez, J. J., Palencia, P. G., Meana, A. (2008). How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology, 10, 2659-2669. doi:

Janashia, I., & Alaux, C. (2016). Specific Immune Stimulation by Endogenous Bacteria in Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 1-4. doi:

Jefferson, J. M., Dolstad, H. A., Sivalingam, M. D., Snow, J. W. (2013). Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS One, 8(1), e54097. doi:

Maggi, M., Ruffinengo, S., Damiani, N., Sardella, N., Eguaras, M. (2009). First detection of Varroa destructor resistance to coumaphos in Argentina. Experimental and Applied Acarology, 47, 317-320.

Maggi, M., Ruffinengo, S., Negri, P., Eguaras, M. (2010). Resistance phenomena to amitraz from populations of the ectoparasitic mite Varroa destructor o f A rgentina. Parasitology Research, 107, 1189-1192.

Maggi, M., Ruffinengo, S., Mendoza, Y., Ojeda, P., Ramallo, G., Floris, I., Eguaras, M. (2011). Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites’ potential to develop acaricide resistance. Parasitology Research, 108, 815-821.

Maggi, M., Negri, P., Plischuk, S., Szawarski, N., De Piano, F., De Feudis, L., Eguaras, M., Audisio, C. (2013). Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Vet erinary Microbiology, 167, 474-483.

Mattila, H. R., Rios, D., Walker-Sperling, V. E., Roeselers, G., Newton, I. L. G. (2012). Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE, 7(3), e32962. doi:

Medici, S. (2010.) Determinación del contenido de residuos de acaricidas y antibióticos en miel y cera en colmenares argentinos destinados a la producción. Suplemento APINOTIC&AS 2.

Moran, N. A. (2015). Genomics of the honey bee microbiome. Current Opinion in Insect Science, 10, 22-28. doi:

Naug, D. (2009). Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation, 142 (10), 2369-2372.

Neumann, P., & Carreck, N. L. (2010). Honey bee colony losses. Journal of Apicultural Research, 49(1), 1-6.

Newton, I. L., Sheehan, K. B., Lee, F.J., Horton, M. A., Hicks, R. D. (2013). Invertebrate systems for hypothesis- driven microbiome research. Microbiome Science and Medicine, 1(1). doi:

Oldroyd, B. P., (2007). What’s killing American honey bees? PLoS Biology, 5(6), e168. doi:

Paxton, R. (2010). Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? Journal of Apicultural Research, 49(1), 80-84. doi:

Porrini, M. P., Audisio, M. C., Sabaté, D. C., Ibarguren, C., Medici, S. K., Sarlo, E. G., Garrido, P. M., Eguaras, M. (2010). Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitology research, 107(2), 381-8.

Sabaté, D. C., Carrillo, L., & Audisio, M. C. (2009). Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Research in Microbiology, 160, 193-199.

Sabaté, D. C., Cruz, M. S., Benítez-Ahrendts, M. R., Audisio, M. C. (2012). Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance. Probiotics and Antimicrobial Proteins, 4, 39-46.

Simion, G., Trif, A., Cara, M. C. & Damiescu, L. (2011). Evaluation of tetracyclines’ and cloramphenicol’s residues levels in honey from Timis County between 2007 and 2010. (1), 264-269.

Smart, M., & Sheppard, M. (2012). Nosema ceranae in age cohorts of the western honey bee (Apis mellifera). Journal of Invertebrate Pathology, 109, 148-151.

Undeen, A. H., & Vávra, J. (1997). Research methods for entomopathogenic Protozoa. Manual of Techniques in Insect Pathology. Academic Press, London. pp. 117-151.

vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Coxfoster, D., Chen, Y., Underwood, R. M., Tarpy, D. R., Pettis, J. S. (2009). Colony Collapse Disorder: a descriptive study. PloS ONE, 4(8), e6481. doi:

Vásquez, A., Forsgren, E., Fries, I., Paxton, R., Flaberg, E., Szekely, L., Olofsson, T. C. (2012). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE, 7 (3), e33188. doi:

Wilson-Rich, N., Dres, S. T., & Starks, P. T. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of insect physiology, 54(10-11), 1392-9.

Yoshiyama, M., & Kimura, K. (2009). Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology, 102, 91-96. doi:

Yoshiyama, M., Sugimura, Y., Takaya, N., Kimoto-Nira, H., Suzuki, C. (2013). Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. Journal of Invertebrate Pathology, 112, 62-67. doi:

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information


IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 307 41
PDF Downloads 132 132 14