Differentiation of Five Species of Megachile (Hymenoptera: Megachilidae), based on Wing Shape

Open access

Abstract

In the present work we used landmark-based geometric morphometrics to compare the wing shapes of five species of Megachile (belonging to three subgenera) to confirm whether this technique may be used reliably for differentiation of this group. Analyses of wing shape by the use of principal component analysis (PCA), and canonical variate analysis (CVA) led to a clear differentiation among species. We found a close phenotypic similarity in wing shape between M. albisecta (belonging to the subgenus Creightonella) and M. picicornis (belonging to the subgenus Eutricharaea). According to the results of UPGMA, a higher degree of divergence between M. farinosa (belonging to the subgenus Pseudomegachile) and species belonging to other subgenera, was detected. The results of a cross-validation test indicated that geometric morphometrics is an effective technique to use for distinguishing between Megachile species. The reliability rate of this technique was between 85.71-100%. Using only two submarginal cell landmarks for generating shape variables, the cross-validation test correctly assigned individuals to their respective species, with a 92.85-100% reliability rate. Significant differences in wing size were obtained among the analysed species.

Adams, D. C., Slice, D. E., & Rolf, F. J. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71, 5-16.

Ascher, J. S., & Pickering, J. (2015). Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). Available at: http://www.discoverlife.org/mp/20q?guide=Apoidea_species.

Baylac, M., Villemant, C., & Simbolotti, G. (2003). Combining geometric morphometrics with pattern recognition for the investigation of species complexes. Biological Journal of the Linnean Society, 80(1), 89–98. DOI: 10.1046/j.1095-8312.2003.00221.x

Bohart, G. E. (1972). Management of wild bees for the pollination of crops. Annual Review of Entomology, 17, 287–312.

Bookstein, F. L. (1991). Morphometric tools for landmark data. Cambridge University Press, Cambridge. 435 pp.

Brown, M. T., & Wicker, L. R. (2000). Discriminant analysis. In: Tinsley H. E. A. Brown S. D. (Eds.), Handbook of applied multivariate statistics and mathematical modeling. Academic Press, San Diego, California: 209–235.

De Meulemeester, T., Michez, D., Aytekin, A. M., Danforth, B. N. (2012). Taxonomic affinity of halictid bee fossils (Hymenoptera: Anthophila) based on geometric morphometrics analyses of wing shape. Journal of Systematic Palaeontology, 10(4), 755-764. DOI: 10.1080/14772019.2011.628701

Dolati, L., Nazemi Rafie, J., & Khalesro, H. (2013). Landmark-based morphometric study in the fore and hind wings of an Iranian race of European honeybee (Apis mellifera meda). Journal of Apicultural Science, 57 (2), 187-197. DOI: 10.2478/jas-2013-0028

Eardley, C., Roth, D., Clarke, J., Buchmann, S., Gemmill. B. (Eds). (2006). Pollinators and pollination: A resource book for policy and practice. African Pollinator Initiative. Pretoria. 77 pp.

Francoy, T. M., Franco, F. F., & Roubik, D. W. (2012). Integrated landmark and outline-ased morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie, 43, 609–617. DOI: 10.1007/s13592-012-0132-2

Francoy, T. M., Silva, R. A. O., Nunes-Silva, P., Menezes, C., Imperatriz-Fonseca, V. L. (2009). Gender identification of five genera of stingless bees (Apidae, Meliponini) based on wing morphology. Genetics and Molecular Research, 8, 207–214.

Gemmill-Herren, B., Aidoo, K., Kwapong, P., Martins, D., Kinuthia, W., Gikungu, M., Eardley, C. (2014). Priorities for research and development in the management of pollination services for agriculture in Africa. Journal of Pollination Ecology, 12(6), 40-51.

Gerula, D., Tofilski, A., Wegrzynowicz, P., Skowronek, W. (2009). Computer-assisted discrimination of honey bee subspecies used for breeding in Poland. Journal of Apicultural Science, 53 (2), 105-114.

Gonzalez, V. H. (2008). Phylogeny and classification of the bee tribe Megachilini (Hymenoptera: Apoidea, Megachilidae), with emphasis on the genus Megachile. PhD Thesis, University of Kansas, Lawrence, Kansas. 274 pp.

Güler, Y., Aytekin, A. M., & Cagatay, N. (2006). Systematical studies on Anthidiini (Hymenoptera: Megachilidae) geometric morphometric approach. Acta Entomologica Sinica, 49(3), 474-483.

Hammer, Ø., Harper, D. A. T., & Ryan P. D. (2001). PAST Version 2.17: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1-9.

Kandemir, İ., Moradi, M. G., Özden, B., Özkan, A. (2009). Wing geometry as a tool for studying the population structure of dwarf honeybees (Apis florea Fabricius 1876) in Iran. Journal of Apicultural Research, 48(4), 238-246. DOI: 10.3896/IBRA.1.48.4.03

Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357. DOI:10.1111/j.1755-0998.2010.02924.x

Mac Leod, N. (2001). Landmarks, localization, and the use of morphometrics in phylogenetic analysis. In: Edgecombe, G., Adrain, J., Lieberman, B. (Eds.), Fossils, phylogeny, and form: an analytical approach. Kluwer Academic/Plenum, New York: 197-233.

Michener, C. D. (2007). The bees of the world, second edition. The Johns Hopkins University Press, Baltimore. xvi+[i]+953 pp.

Miguel, I., Baylac, M., Iriondo, M., Manzano, C., Garnery, L., Estonba, A. (2011). Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch. Apidologie, 42, 150-161. DOI: 10.1051/apido/2010048

Nazemi Rafie, J., Mohamadi, R., & Teimory, H. (2014). Comparison of two morphometrics methods for discriminating of honey bee (Apis mellifera meda Sk.) populations in Iran. International Journal of Zoology and Research, 4, 61-70.

Oleska, A., & Tofilski, A. (2014). Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie, 46(1):49-60. DOI: 10.1007/s13592-014-0300-7

Pavlinov, I. Y. (2001). Geometric morphometrics, a new analytical approach to comparison of digitized images. Zoological Journal of Moscow, 79, 1-27.

Pitts-Singer, T. L., & Cane, J. H. (2011). The alfalfa leaf-cutting bee, Megachile rotundata: the world’s most intensively managed solitary bee. Annual Review of Entomology, 56, 221–237. DOI: 10.1146/annurev-ento-120709-144836

Rohlf, F. J. (2010). tpsDIG, Version 2.16. A program for digitizing landmarks and outlines for geometric morphometrics. Department of Ecology and Evolution, State University of New York, Stony Brook, NY, USA. Available at: http://life.bio.sunysb.edu/morph/.

Sheffield, C. S., Ratti, C., Packer, L., Griswold, T. (2011). Leafcutter and mason bees of the genus Megachile Latreille (Hymenoptera: Megachilidae) in Canada and Alaska. Canadian Journal of Arthropod Identification, 18, 1–107. DOI: 10.3752/cjai.2011.18

StatSoft Inc. (2011). STATISTICA (data analysis software system), version 10. Available at: http://www.statsoft.com.

Tofilski, A. (2008). Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie, 39(5), 558-563. DOI: 10.1051/apido:2008037

Williams, N. M., & Goodell, K. (2000). Association of mandible shape and nesting material in Osmia Panzer (Hymenoptera: Megachilidae): A morphometric analysis. Annals of the Entomological Society of America, 93(2), 318-325.

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information


IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 171 171 6
PDF Downloads 73 73 3