Rheological Properties of Some Honeys in Liquefied and Crystallised States

Open access


The paper presents the results of rheological measurements conducted on three types of Polish honey: rape, multi-floral, and buckwheat honeys. The investigations involved identification of the properties of the honeys in both liquefied (by heating) as well as crystallised states. Both steady shear as well as dynamic rheological tests were performed. As a result, it was possible to show that the liquefied honeys behave like Newtonian fluids. Good agreement of the results between the rotary shear and oscillation rotary tests was observed, thus fulfilling the Cox-Mertz rule. The structure of the honeys was subjected to qualitative scrutiny by analysing photographs of the crystals taken in the conditions of shearing interferometry. The quantitative analysis was made by presenting a numerical distribution of crystal colonies with reference to the maximum dimensions of individual crystals. The geometric measurements of the crystals were carried out using analiSIS software. In the crystallised form, the media showed a thixotropic effect, and their apparent viscosity was many times higher than the dynamic viscosity in the liquid state. After plasticising by deformation with an increasing shear rate of up to 450s−1, the equilibrium melting curves of the crystallised honeys were described by the Ostwald-de Waele model. One particular reason for the research was to show that the results obtained for the honeys crystallised by the steady shear method, were qualitatively different from the results obtained in the dynamic measurements. The Cox-Mertz rule cannot be applied for the crystallised honeys.

Abu-Jdayil, B., Al-Majeeed, G. A., Al-Malah, K. I., M., Zaitoun, S. (2002). Heat effect on rheology of light- and dark-colored honey. Journal of Food Engineering, 51, 33-38.

Ahmed, J., Prabhu, S. T., Raghavan, G. S. V., Ngadi, M. (2007). Physico–chemical rhreological, calorimetric and dielectric behavior of selected Indian honey. Journal of Food Engineering, 79, 1207-1213. DOI:10.1016/j.jfoodeng.2006.04.048

Al-Malah, K. I. M., Abu-Jadyil, B., Zaitoun, S., Al-Majeeed, G. A. (2001). Application of WLF and Arrhenius kinetics to rheology of selected dark-colored honey. Journal of Food Process Engineering, 24, 341-357.

Assil, H. I., Sterling, R. & Sporns, P. (1991). Crystal control in processed liquid honey. Journal of Food Science, 56, 1034–1037.

Bakier S. (2009). Capabilities of near-infrared spectroscopy to analyse changes in water bonding during honey crystallisation process. International Journal of Food Science and Technology., 44(3):519-524. DOI:10.1111/j.1365-2621.2008.01837.x

Bakier, S. (2007). The influence of temperature and water content on the rheological properties of polish honeys. Polish Journal of Food and Nutrition Science, 57, 17-23.

Bakier, S. (2003). Optical characteristics of the crystals in granulated bee honey. Inżynieria Rolnicza, 8(50), 19-25 (in Polish).

Bakier, S., (2004). Description of phenomena occurring during the heating of crystallized honey. Acta Agrophysica, 3(3), 415-424.

Bakier, S. & Bakoniuk, J.,R. (2013). Rheological properties of some ketchups on the Polish market. Acta Agrophysica, 20(2), 211-225.

Bhandari, B., D’arcy, B. & Chow, S. (1999). Rheology of selected Australian honeys. Journal of Food Engineering, 41, 65–68.

Cavia, M. M., Fernández-Muiño M. A., Gömez-Alonso E., Montes-Pérez M. J., Huidobro J. F., Sancho M. T. (2002). Evolution of fructose and glucose in honey over one year, influence of induced granulation. Food Chemistry, 78, 157-161.

Chen, Y.W., Lin, C-H., Wu, F-Y. & Chen, H-H. (2009). Rheological properties of crystallized honey prepared by a new type of nuclei. Journal of Food Process Engineering, 32, 512–527. DOI: 10.1111/j.1745-4530.2007.00227.x

Conforti, P. A., Lupano, C. E., Malacalza, N. H., Arias V., Castells C. B. (2006). Crystalization of honey at −20°C. International Journal of Food Properties, 9, 99-107. DOI: 10.1080/10942910500473962

da Costa, C. C. & Pereira, R., G. (2002). The influence of propolis on the rheological behaviour of prure honey. Food Chemistry, 76, 417-421.

Crane, E. (1975). Honey a Comprehensive Survey. London: Heinemann.

Escuredo, O., Dobre, I., Fernández-González, M. M., Seijo, C. (2014). Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chemistry, 149, 84-90. DOI: 10.1016/j.foodchem.2013.10.097

Ferguson, J. & Kembłowski, Z. (1991). Applied Fluid Rheology. London: Elsevier, Applied Science. 323 pp.

Gómez-Díaz, D., Navaza, J. M. & Quintáns-Riveiro, L. C. (2006). Rheological behaviour of Galician honeys. European Food Research and Technology, 222, 439-442. DOI: 10.1007/s00217-005-0120-0

Gleiter, R.A., Horn, H. & Isengard, H.-D. (2006). Influence of type and state of crystallisation on the water activity of honey. Food Chemistry, 96, 441–445. DOI: 10.1016/j.foodchem.2005.03.051

Junzheng, P. & Changying, J. (1998). General rheological model for natural honeys in China. Journal of Food Engineering, 36, 165–168.

Juszczak, L. & Fortuna, T. (2006). Rheology of selected Polish honeys. Journal of Food Engineering, 75, 43-49. DOI:10.1016/j.jfoodeng.2005.03.049

Kayacier, A., & Karaman, S. (2008). Rheological and some physicochemical characteristics of selected turkish honeys. Journal of Texture Studies, 39, 17–27.

Kulkarni, C., Belsare, N. & Lele, A. (2006). Studies on shrikhand rheology. Journal of Food Engineering, 74, 169-177. DOI:10.1016/j.jfoodeng.2005.02.029

Kulmyrzaev, A., & McClements, D.J. (2000). High frequency dynamic shear rheology of honey. Journal of Food Engineering, 45, 219-224.

Lazaridou, A., Biliaderis, C. G., Bacandritsos, N. & Sabatini, A. G. (2004). Composition, thermal and rheological behavior of selected Greek honeys. Journal of Food Engineering, 64, 9-21. DOI: 10.1016/j.jfoodeng.2003.09.007

Mehryar, L., Esmaiili, M. & Hassanzadeh, A. (2013). Evaluation of Some Physicochemical and Rheological Properties of Iranian Honeys and the Effect of Temperature on its Viscosity. American-Eurasian ournal of Agricultural & Enviromental Sciences, 13(6), 807-819. DOI: 10.5829/idosi.aejaes.2013.13.06.1971

Mora-Escobedo, R., Moguel-Ordóňez, Y., Jarmillo-Flores, M.E., Gutiérrez-López G. F. (2006). The composition, rheological and thermal properties of tajonal (Viguiera denata) mexican honey. International Journal Food Properties, 9, 299-316. DOI: 10.1080/10942910600396159

Mossel, B., Bhandari, B., D’Arcy, B., Caffin, N., (2000). Use of an Arrhenius model to predict rheological behaviour in some Australian honeys. Lebensmittel-Wissenschaft und-Technologie, 33, 545–552.

Oh, J.H., & Yoo, B. (2011). Effect of Temperature on the Relationship between Moisture Content and Dynamic Rheological Properties of Korean Honey. Food Science and Biotechnology, 20(1), 261-265. DOI 10.1007/s10068-011-0036-3

Oroian, M., Amariei, S., Escriche, I., Gutt, G. A (2013). Viscoelastic Model for Honeys Using the Time–Temperature Superposition Principle (TTSP). Food Bioprocess Technology, 6, 2251–2260. DOI 10.1007/s11947-012-0893-7

Rao, M.A. (1999). Rheology of fluid semisoli foods, Gaithersburg Maryland: A Chapman & Hall Food Science Book, Aspen Publichers Inc.

Recondo, M. P., Elizalde, B. E. & Buera, M. P. (2006). Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. Journal of Food Engineering, 77, 126-134. DOI:10.1016/j.jfoodeng.2005.06.054

Regulation of the Minister of Agriculture and Rural Development dated 14 January 2009.

Schramm, G. (1994). A practical approach to rheology and rheometry, Karlsruhe: Copyright by Gebrueder HAAKE GmbH.

SIS (2003) User’s Guide analySIS. Version 3.2. Soft Inaging System GmbH. Germany Munster.

Sopade, P.A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., Caffin N. (2002). Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 56, 67–75.

Sopade, P. A., Halley, P. J., D’arcy, B. R., Bhandari, B. R. & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27, 284-309.

Statsoft (2014). STATISTICA System Reference. Version 12. Kraków, Polska.

Tárrega, A. L. & Durán Costell, E. (2005). Rheological characterization of semisolid dairy desserts. Effect of temperature. Food Hydrocolloids, 19, 133–139. DOI:10.1016/j.foodhyd.2004.04.022

Trávníček, P., Vítěz, T. & Přidal, A. (2012). Rheological properties of honey. Scientia agriculturae bohemica, 43(4), 160–165. DOI: 10.7160/sab.2012.430406

White, J. W. (1978). Honey. Advances in Food Research, 24, 287–374.

Yanniotis, S., Skaltsi, S. & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72, 372-377.

Yoo, B. (2004). Effect of temperature on dynamic rheology of Korean honeys. Journal of Food Engineering, 65, 459-463. DOI:10.1016/j.jfoodeng.2004.02.006

Zaitoun, S., Al-Majeed, G. A., Al-Malah, K. I. M., Abu-Jdayil, B (2001). Rheological properties of selected light colored Jordanian honey. International Journal of Food Properties, 4, 139–148.

Zamora, M. C. & Chirife, J. (2006). Determination of water activity change due to crystallization in honeys from Argentina. Food Control, 17, 59–64. DOI:10.1016/j.foodcont.2004.09.003

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information

IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 287 287 46
PDF Downloads 118 118 17