Individual precocity, temporal persistence, and task-specialization of hygienic bees from selected colonies of Apis mellifera

Open access


Hygienic behaviour is a complex trait that gives Apis mellifera L. resistance against brood diseases. Variability in the expression of hygienic behaviour is evidenced at the colony-level and is explained by the proportion and propensity of individual worker bees that engage in hygienic activities. We investigated the temporal performance and the dynamics of task-specialisation of individual bees over time, both in selected hygienic (H) and non-hygienic (NH) colonies. Then we evaluated the impact of these behavioural aspects on the colony performance. Bees that perform hygienic behaviour (hygienic bees) in our H colonies were more persistent in the hygienic activities throughout the days of the investigation. Such bees were more efficient in the removal of pin-killed brood than hygienic bees in the NH colonies. Hygienic bees in the H colonies were also specialist in the sub-tasks involved in the detection of odour stimulus from dead brood and continued to perform these activities throughout the days of the investigation (temporal persistence). Age-distribution of hygienic bees in the H colonies was asymmetrical, with a larger proportion of these bees performing hygienic activities early in life. At a colony-level, H showed higher efficiency compared to the NH colonies. The present results highlight the fact that individual behaviour may influence the collective dynamics of the hygienic behaviour in honeybee colonies. The results also note that the selection for highly hygienic colonies would result in changes in individual bees that improve the performance of the behaviour at the colony level. The relevance of task-partitioning and age-specialisation of hygienic bees on social immunity is discussed.

Arathi, H.S., Burns, I., & Spivak, M. (2000). Ethology of hygienic behaviour in the honey bee Apis mellifera L (Hymenoptera: Apidae): behavioural repertoire of hygienic bees. Ethology, 106(4): 365-379. DOI: 10.1046/j.1439-0310.2000.00556.x

Arathi, H.S., & Spivak, M. (2001). Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L. Animal Behavior, 62(1), 57-66. DOI: 10.1006/ anbe.2000.1731

Baracchi, D., & Cini, A. (2014). A socio-spatial combined approach confirms a highly compartmentalized structure in honeybees. Ethology, 120(12), 1167-1176. DOI: 10.1111/eth.12290

Beshers S.N., & Fewell J.H. (2001). Models of division of labor in social insects. Annual Review of Entomology, 46(1), 413-440.

Bigio G., Toufailia H. A., Hughes W. H. O., Ratnieks F. L. W. (2014). The effect of one generation of controlled mating on the expression of hygienic behaviour in honey bees. Journal of Apicultural Research, 53(5), 563-568. DOI: 10.3896/IBRA.

Borsuk G. (2009). Influence of increased division of labour amog worker bees on dead brood removal. Journal of Apicultural Science, 53(2), 69-77.

Calderone N.W., & Page R.E. (1988). Genotypic variability in age polyethism and task specialization in the honeybee, Apis mellifera (Hymenoptera: Apidae). Behavioral Ecology and Sociobiology, 22(1), 17-25. DOI: 10.1007/BF00395694

Chakroborty N.K., Bienefeld K., & Menzel R. (2015). Odor learning and odor discrimination of bees selected for enhanced hygienic behavior. Apidologie, 46(4), 499-514. DOI: 10.1007/s13592-014-0342-x

Charbonneau D., Blonder B., & Dornhaus A. (2013). Social insects: a model system for network dynamics. In: Temporal Networks. Holme P., Sarama J. (Eds.) Springer. Heidelberg, Berlin: 217-244.

Cremer S., Armitage S. A. O., & Schmid-Hempel P. (2007). Social immunity. Current Biology, 17(16), R693-R702. DOI: 10.1016/j.cub.2007.06.008

Di Rienzo J.A., Casanoves F., Balzarini M. G., Gonzalez L., Tablada M., Robledo C. W. InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL

Dukas R., & Visscher P. K. (1994). Lifetime learning by foraging honey bees. Animal Behavior, 48(5), 1007-1012.

Gramacho K., & Spivak M. (2003). Differences in olfactory sensitivity and behavioral responses among honey bees bred for hygienic behavior. Behavioral Ecology and Sociobiology, 54(5), 472-479. DOI: 10.1007/s00265-003-0643-y

Masterman R., Smith B.H., & Spivak M. (2000). Brood odor discrimination abilities in hygienic honey bees (Apis mellifera L) using proboscis extension reflex conditioning. Journal of Insect Behavior, 13(1), 87-101. DOI: 10.1023/A:1007767626594

Masterman R., Ross R., Mesce K., Spivak M. (2001). Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honey bees (Apis mellifera L.). Journal of Comparative Physiology A, 187(6), 441-452. DOI: 10.1007/s003590100216

Naug D., & Camazine S. (2002). The role of colony organization on pathogen transmission in social insects. Journal of Theorical Biology, 215(4), 427-439. DOI: 10.1006/jtbi.2001.2524

Naug D. (2008). Structure of the social network and its influence on transmission dynamics in a honeybee colony. Behavioral Ecology and Sociobiology, 62(11), 1719-1725. DOI: 10.1007/s00265-008-0600-x

Newton D.C., & Ostasiewski N. J. A. (1986). A simplified bioassay for behavioral resistance to American Foulbrood in honey bees (Apis mellifera L). American Bee Journal, 126(4), 278-281.

Oxley P. R, Spivak M., & Oldroyd B.P. (2010). Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Molecular Ecology, 19(7), 1452-1461. DOI: 10.1111/j.1365-294X.2010.04569.x

Page R.E., & Mitchell S.D. (1998). Self-organization and the evolution of division of labor. Apidologie, 29(1-2), 171-190.

Page R.E., Scheiner R., Erber J., Amdam J. V. (2006). The Development and Evolution of Division of Labor and Foraging Specialization in a Social Insect (Apis mellifera L.) Current Topics in Developmental Biology, 74, 253-286. DOI: 10.1016/S0070-2153(06)74008-X

Palacio M. A., Figini E., Rodriguez E. M., Rufinengo S., Del Hoyo M. L., Bedascarrasbure E. (1996). Selección para comportamiento higiénico en una población de Apis mellifera. In: Anales del V Congreso Iberolatinoamericano de Apicultura. Mercedes - Uruguay: 148-150.

Palacio M. A., Figini E., Rodriguez E. M., Rufinengo S., Bedascarrasbure E., del Hoyo M. L. (2000). Changes in a population of Apis mellifera selected for its hygienic behavior. Apidologie, 31(4), 471-478.

Palacio M. A., Rodriguez E., Goncalves L., Bedascarrasbure E., Spivak M. (2010). Hygienic behaviors of honey bees in response to brood experimentally pin-killed or infected with Ascosphaera apis. Apidologie, 41(6), 602-612. DOI: 10.1051/apido/2010022

Panasiuk B., Skowronek W., Bieńkowska M., Gerula D., Węgrzynowicz P. (2010). Age of worker bees performing hygienic behaviour in honeybee colony. Journal of Apicultural Science, 54, 109-115.

Perez-Sato J. A., Châlinen N., Martin S. J., Hughes W. O. H., Ratnieks F. L. W. (2009). Multi-level selection for hygienic behaviour in honeybees. Heredity, 102, 609-615. DOI:10.1038/hdy.2009.20

Robinson G. E. (1992). Regulation of division of labor in insect societies. Annual Review of Entomology, 37, 637-665. DOI: 10.1146/annurev. en.37.010192.003225

Rothenbuler W. C. (1964a). Behavior genetics of nest cleaning in honey bees. IV. Responses of F1 and backcross generations to disease-killed brood. American Zoologist, 4(2), 11-123.

Rothenbuhler W. C. (1964b). Behavior genetics of nest cleaning in honeybees. I. Responses of four inbred lines to disease killed brood. Animal Behavior, 12(4), 578-583. DOI: 10.1016/0003-3472(64)90082-X

Spivak M., & Reuter G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie, 32(6), 555-565. DOI: 10.1051/apido:2001103

Spivak M., Masterman R., Ross R., Mesce K. A. (2003). Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. Journal of Neurobiology, 55(3), 341-354. DOI: 10.1002/ neu.10219

StatSoft Inc (2001). STATISTICA V 6.0 for Windows. StatSoft Inc, Tulsa, OK, USA.

Stroeymeyt N., Casillas Perez B., & Cremer S. (2014). Organisational immunity in social insects. Current Opinion in Insect Science, 5, 1-5. DOI:10.1016/j. cois.2014.09.001

Sun Q., & Zhou X. (2013). Corpse management in social insects. International Journal of Biological Sciences, 9(3), 313-321. DOI: 10.7150/ijbs.5781

Swanson J., Torto B., Kells S., Mesce K., Tumlinson J., Spivak M. (2009). Volatile compounds from chalkbrood Ascosphaera apis infected larvae elict honey bee (Apis mellifera) hygienic behavior. Journal of Chemical Ecology, 35, 1088-1116.

Theraulaz G., Bonabeau E., & Deneubourg J. L. (1998). Response threshold reinforcement and division of labour in insect societies. Proceedings of the Royal Society of London B, 265(1393), 327-332. DOI: 10.1098/rspb.1998.0299

Wilson-Rich N., Spivak M., Fefferman N.H., Starks P.T. (2009). Genetic, individual, and group facilitation of disease resistance in insect societies. Annual Review of Entomology, 54, 405-423. DOI: 10.1146/annurev. ento.53.103106.093301

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information

IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 194 39
PDF Downloads 81 81 15