Characterization and antioxidant capacity of sweet chestnut honey produced in North-West Spain

Open access


In recent years, authentic foodstuffs have became a major requirement for consumers and producers worldwide. Honey has increased in popularity since it is associated with a natural diet, and because of honey’s authentic origin. The present study investigated the palynological characteristics, physicochemical parameters, total phenol content, flavonoid content, and radical scavenging activity of 41 sweet chestnut (Castanea sativa) honeys from the northwestern part of Spain. These honeys were characterised by high values of electrical conductivity, pH, diastase content, and colour. All the samples showed a pollen combination of Castanea sativa-Rubus-Cytisus type-Erica. Fructose and glucose were 37.2% and 25.9%, while other sugars were less than 5%. Regarding the mineral content K, was the main with a mean value of 260.2 mg/100g. Other elements as Mg with a mean value of 17.1 mg/100g, Ca (mean value of 15.8 mg/100g) and P (mean value of 12.8 mg/100g) were well represented in this honey type. The phenol and flavonoid content were high (mean values of 129.8 mg/100g and 9.0 mg/100g, respectively). Multivariate statistical techniques showed the close relationship of colour, Mg, P, phenols, melezitose, and flavonoids, and the radical scavenging activity.

Ahn, R., Kumazawa, S., Usui, Y., Nakamura, J., Matsuka, M., Zhu, F.,& Nakayama, T. (2007). Antioidant activity and constituents of propolis collected in various areas of China. Food Chemistry, 101, 1383-1392.

Alvarez-Suarez, J. M., Tulipani, S., Romandini, S., Bertoli, E., & Battino, M. (2010). Contribution of honey in nutrition and human health: a review. Mediterranean Journal of Nutrition and Metabolism, 3, 15-23.

Arvouet-Grand, A., Vennat, B., Pourrat, A., & Legret, P. (1994). Standardisation d’un extrait de propolis et identification des principaux constituants. Journal de Pharmacie de Belgique, 49, 462-468.

Atanassova, J., & Tonkov, S. (2013). Flower morphology of Castanea sativa Mill. from Bulgaria and characteristics of unifloral chestnut honey. Comptes rendus de l’Academie bulgare des Sciences, 66(8), 1115-1120.

Atrouse, O. M., Oran, S. A., & Al-Abbadi, S. Y. (2004). Chemical analysis and identification of pollen grains from different Jordanian honey samples. International Journal of Food Science & Technology, 39, 413-417.

Bentabol, A., García, Z. H., Galdón, B. R., Rodríguez, E. R., & Romero, C. D. (2011). Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry, 126(2), 664-672.

Bertoncelj, J., Dobersek, U., Jamnik, M., & Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry, 105, 822-828.

Bilandzic, N., Gacic, M., Ðokic, M., Sedak, M., Šipusic, Ð. I., Koncurat, A., & Gajger, I. T. (2014). Major and trace elements levels in multifloral and unifloral honeys in Croatia. Journal of Food Composition and Analysis, 33, 132-138.

Bobis, O., Mãrghitaş, L., Rindt, I. K., Niculae, M., & Dezmirean, D. (2008). Honeydew honey: correlations between chemical composition, antioxidant capacity and antibacterial effect. Scientific Papers Animal Science and Biotechnologies, 41(2), 271-277.

Bogdanov, S., Haldimann, M., Luginbuhl, W., & Gallmann, P. (2007). Minerals in honey: environmental, geographical and botanical aspects. Journal of Apicultural Research, 46(4), 269-275.

Brand-Williams, W., Culivier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.

Caroli, S., Forte, G., Lamiceli, A. L., & Galoppi, B. (1999). Determination of essential and potentially toxic trace elements in honey by inductively coupled plasma-based techniques. Talanta, 50(2), 327-336.

Castro-Vázquez, L., Leon-Ruiz, V., Alañon, M. E., Pérez-Coello, M. S., & González-Porto, A. V. (2014). Floral origin markers for authenticating Lavandin honey (Lavandula angustifolia x latifolia). Discrimination from Lavender honey (Lavandula latifolia). Food Control, 37, 362-370.

Dobre, I., Georgescu, L. A., Alexe, P., Escuredo, O., & Seijo, M. C. (2012). Rheological behaviour of different honey types from Romania. Food Research International, 49, 126-132.

Escuredo, O., Míguez, M., Fernández-González, M., & Seijo, M. C. (2013a). Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chemistry. 138, 851-856. DOI: 10.1016/j.foodchem.2012.11.015

Escuredo, O., Fernández-González, M., Rodríguez Flores, M. S., Seijo-Rodríguez, A., & Seijo, M. C. (2013b). Influence of the botanical origin of honey from North Western Spain in some antioxidant components. Journal of Apicultural Science, 57(1), 5-14. DOI: 10.2478/jas-2013-0001

Escuredo, O., Dobre, I., Fernández-González, M., & Seijo, M. C. (2014). Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chemistry, 149, 84-90. DOI:10.1016/j.foodchem.2013.10.097

Escuredo, O., González-Martín, M. I., Rodríguez- Flores, M. S., & Seijo, M. C. (2015). Near infrared spectroscopy applied to the rapid prediction of the floral origin and mineral content of honeys. Food chemistry, 170, 47-54. DOI: 10.1016/j.foodchem.2014.08.061

Ferreira, I. C. F. R., Aires, E., Barreira, J. C. M., & Estevinho, L. (2009). Antioxidant activity of Portuguese honey samples: different contributions of the entire honey and phenolic extract. Food Chemistry, 114, 1438-1443.DOI:10.1016/j.foodchem.2008.11.028

Giorgi, A., Madeo, M., Baumgartner, J., & Lozzia, G. C. (2011). The relationships between phenolic content, pollen diversity, physicochemical information and radical scavenging activity in honey. Molecules, 16, 336-347.

Juan-Borrás, M., Periche, A., Domenech, E., & Escriche, I. (2015). Routine quality control in honey packaging companies as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS. Food Control, 50, 243-249.

Kolayli, S., Aliyazicioglu, R., Ulusoy, E., & Karaoglu, Ş. (2008). Antioxidant and antimicrobial activities of selected Turkish honeys. Hacettepe Journal of Biology and Chemistry, 36(2), 163-172.

Kropf, U., Korosec, M., Bertoncelj, J., Ogrinc, N., Necemer, M., Kump, P., & Golob, T. (2010). Determination of the geographical origin of Slovenian black locust, lime and chestnut honey. Food Chemistry, 121(3), 839-846.

Küçük, M., Kolayl, S., Karaoğlu, S., Ulusoy, E., Baltac, C., & Candan, F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100, 526-534.

Lachman, J., Orsák, M., Hejtmánková, A., & Kovárová, E. (2010). Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT-Food Science and Technology, 43, 52-58.

Louveaux, J., Maurizio, A., & Vorwohl, G. (1978) Methods of melissopalynology. Bee World, 59, 139-157.

Melicharová, L., & Vizoso-Arriba, O. (2012). Situation of sweet chestnut (Castanea sativa Mill.) in Spain, Galicia: A review. Scientia Agriculturae Bohemica, 43(2), 78-84.

Nozal-Nalda, M. N., Yagüe, J. B., Calva, J. D., & Gómez, M. M. (2005). Classifying honeys from the Soria province of Spain via multivariate analysis. Analytical and bioanalytical chemistry, 382(2), 311-319.

Ouchemoukh, S., Schweitzer, P., Bachir-Bey, M., Djoudad- Kadji, H., & Louaileche, H. (2010). HPLC sugar profiles of Algerian honeys. Food chemistry, 121(2), 561-568.

Perna, A., Intaglietta, I., Simonetti, A., & Gambacorta, E. (2013). A comparative study on phenolic profile, vitamin C content and antioxidant activity of Italian honeys of different botanical origin. International Journal of Food Science & Technology, 48, 1899-1908. DOI: 10.1111/ijfs.12169

Persano-Oddo, L., & Piro, R. (2004). Main European unifloral honeys: Descriptive sheets. Apidologie, 35, 38-81.

Pichichero, E., Canuti, L., & Canini, A. (2009). Characterisation of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. Journal of the Science of Food and Agriculture, 89, 609-616.

Ruoff, K., Luginbühl, W., Bogdanov, S., Bosset, J. O., Estermann, B., Ziolko, T., & Amad R. (2007). Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry. European Food Research and Technology, 225(3-4), 415-423.

Rybak-Chmielewska, H., Szczesna, T., Was E., Jaskiewicz, K., & Teper, D. (2013). Characteristics of Polish unifloral honeys IV. Honeydew honey, mainly Abies alba L. Journal of Apicultural Science, 57(1), 51-59. DOI: 10.2478/jas-2013-0006

Sanz, M. L., Gonzalez, M., De Lorenzo, C., Sanz, J., & Martinez-Castro, I. A. (2005). A contribution to the differentiation between nectar honey and honeydew honey. Food Chemistry, 9, 313-317.

Sarikaya, A. O., Ulusoy, E., Öztürk, N., Tunçezl, M., & Kolayli, S. (2009). Antioxidant activity and phenolic acid constituents of chestnut (Castania sativa Mill.) honey and propolis. Journal of Food Biochemistry, 33, 470-481.

Seijo, M. C., Escuredo, O., & Fernández-González, M. (2011). Fungal diversity in honeys from northwest Spain and their relationship to the ecological origin of the product. Grana, 50, 55-62.

Singleton, V. L., & Rossi, J. A. (1965). Colorymetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.

Vela, L., De Lorenzo, C., & Perez, R. A. (2007). Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. Journal of the Science of Food and Agriculture, 87(6), 1069-1075.

Was, E., Rybak-Chmielewska, H., Szczesna, T., Kachaniuk, K., & Teper, D. (2011). Characteristics of Polish unifloral honeys. II Lime honey (Tilia spp.). Journal of Apicultural Science, 55(1), 121-128.

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information

IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 193 21
PDF Downloads 106 106 23