Efficiency of GC-MS method in detection of beeswax adulterated with paraffin

Open access

Abstract

The efficiency of the gas chromatography - mass detector (GC-MS) technique for the detection of beeswax adulterated with paraffin, was evaluated. For this purpose, beeswax samples with paraffin additions (3, 5, 10, 30, 50%) were analysed. Since not enough is known about paraffin compositions, and since it is difficult to detect paraffin in beeswax, the aim of our research was also to compare the hydrocarbon composition of different types of paraffin. The analysis showed that the types of paraffin available on the market, differ qualitatively and quantitatively as far as their hydrocarbon compositions are concerned. In all kinds of paraffin, we found homologous series of n-alkanes that were much longer than those in beeswax. In beeswax, the amount of added paraffin that is possible to detect, differs and depends on the kind of paraffin used for adulteration. In this study, the minimum estimated percent that was detected using the GC-MS technique, was 3%. The adulteration is indicated by the presence of hydrocarbons containing over 35 carbon atoms in the molecule, and by the higher contents of n-alkanes (C20H42 - C35H72), in comparison to the concentration of these compounds determined in pure beeswax. We also presented the results of the quality control of commercial beeswax. Based on our results, it can be stated that beeswax adulteration is currently a problem.

Bernal, J. L., Jimenez, J. J., del Nozal, M. J., Toribio, L., & Martin, M. T. (2005). Physico-chemical parameters for the characterization of pure beeswax and detection of adulterations. European Journal of Lipid Science and Technology, 107(3), 158-166. http://doi.org/10.1002/ejlt.200401105

Bogdanov, S. (2009). Beeswax: production, properties, composition and control. In Beeswax Book. (pp. 1-17). Bee Product Science. Retrieved February 12, 2012 from www.bee-hexagon.net/ wax/beeswax-production-composition-control/ www.bee-hexagon.net

DGF-M-V-6. (1957). DGF - Einheitsmethoden - Abteilung M - Wachse. German Standard - Beeswax. Retrieved April 4, 2014, from http://www.dgfett.de/methods/inhaltsverzeichnis.pdf

Downing, T. D., Kranz, Z. H., Lamberton, J. A., Murray, K. E., & Redcliffe, A. H. (1961). Studies in waxes. XVIII. Beeswax: A spectroscopic and gas chromatographic examination. Australian Journal of Chemistry, 14, 253-263.

Jimenez, J. J., Bernal, J. L., Aumente, S., del Nozal, M. J., Martin, M. T., & Bernal, Jr. J. (2004). Quality assurance of commercial beeswax - Part I. Gas chromatography - electron impact ionization mass spectrometry of hydrocarbons and monoesters. Journal of Chromatography A, 1024, 147-154. http://doi.org/10.1016/j.chroma.2003.10.063

Jimenez, J. J., Bernal, J. L., Aumente, S., Toribio, L., & Bernal, J. Jr. (2003). Quality assurance of commercial beeswax II. Gas chromatography - electron impact ionization mass spectrometry of alcohols and acids. Journal of Chromatography A, 1007, 101-116. http://doi.org/10.1016/S00219673(03)00962-2

Jimenez, J. J., Bernal, J. L., del Nozal, M. J., Martin, M. T., & Bernal, J. (2006). Sample preparation methods for beeswax characterization by gas chromatography with flame ionization. Journal of Chromatography A, 1129, 262-272. http://doi.org/10.1016/j.chroma.2006.06.098

Jimenez, J. J., Bernal, J. L., del Nozal, M. J., Martin, M. T., & Toribio, L. (2009). Identification of adulterants added to beeswax: Estimation of detectable minimum percentages. European Journal of Lipid Science and Technology, 111, 902-911. http://doi.org/10.1002/ejlt.200800263

Jimenez, J. J., Bernal, J. L., del Nozal, M. J., Toribio, L., Bernal, J. (2007). Detection of beeswax adulterations using concentration guide-values. European Journal of Lipid Science and Technology, 109, 682-690. http://doi.org/10.1002/ejlt.200600308

Maia, M., Barros I.R.N.A., A., & Nunes, F. M. (2013). A novel, direct, reagent-free method for detection of beeswax adulteration by single-reflection attenuated total reflectance mid-infrared spectroscopy. Talanta, 107, 74-80. http://dx.doi.org/10.1016/j.talanta.2012.09.052

Maia, M., & Nunes, F. M. (2013). Authentication of beeswax (Apis mellifera) by high-temperature gas chromatography and chemometric analysis. Food Chemistry, 136, 961-968. http://dx.doi.org/10.1016/j.foodchem.2012.09.003

PN-R-78890. (1996). Wosk Pszczeli. Warszawa: Wydawnictwo Normalizacyjne „Alfa”.

Poncini, L., Poncini, A., Prakash, D. (1993). The effects of washing on the fluorescent impurities and chemical properties of Fijian beeswax from Apis mellifera L. Apiacta, 2, 42-51.

Serra Bonvehi, J. (1988). Estudio de la composición de la cera de abejas (Apis mellifera L.) española. Grasas yAceites, 39, 334-342.

Serra Bonvehi, J. (1990). Estudio de la adulteracion de la cera de abejas. Grasas y Aceites, 41, 69-72.

Serra Bonvehi, J., Cañas Lloria, S. Gomez Pajuelo, A. (1989). Caracteristicas fisico-quimicas de la cera de abejas producida en Espana. Alimentacion, equipos y tecnologia, 5-6, 213-216.

Serra Bonvehi, J., Ornantes Bermejo, F. J. (2012). Detection of adulterated commercial Spanish beeswax. Food Chemistry, 132, 642-648. http://doi.org/10.1016/j.foodchem.2011.10.104

Streibl, M., Stransky, K., & Sorm, F. (1966). Über einige neue Kohlenwasserstoffe in Wachs der Honigbiene (Apis mellifera L.). Fette Seifen Anstrichmittel, 68, 799-805.

Svečnjak, L., Baranović, G., Vinceković, M., Prđun, S., Bubalo, D., Tlak Gajger, I. (2015). An approach for routine analytical detection of beeswax adulteration using FTIR-ATR spectroscopy. Journal of Apicultural Science, 59(2), 37-49. http://doi.org/101515/JAS-2015-0018

Szpyrka, R. (1999). Parafina skład, właściwości, zastosowania. Paliwa, oleje i smary w eksploatacji, 64, 27-34.

Tulloch, A. P. (1973). Factors Affecting Analytical Values of Beeswax and Detection of Adulteration. Journal of American Oil Chemists’ Society, 50, 269-272.

Tulloch, A., & Hoffman, L. L. (1972). Canadian Beeswax: Analytical Values and Composition of Hydrocarbons, Free Acids and Long Chain Esters. Journal of American Oil Chemists’ Society, 49, 696-699.

Vit, P., Roldan, S., Tamer, E., Olivo de Acosta, E., Bianchi, M. (1992). Deteccion de adulteraciones en cera de abejas comercializadas en Venezuela. Revista del Instituto Nacional de Higiene Rafael Rangel, 23, 23-27.

Waś, E., Szczęsna, T., Rybak-Chmielewska, H. (2014a). Determination of beeswax hydrocarbons by gas chromatography with a mass detector (GC-MS) technique. Journal of Apicultural Science, 58(1), 145-157. http://doi.org/10.2478/JAS-2014-0015

Waś, E., Szczęsna T., Rybak-Chmielewska H. (2014b). Hydrocarbon composition of beeswax (Apis mellifera) collected from light and dark coloured combs. Journal of Apicultural Science, 58(2), 99-106. http://doi.org/10.2478/JAS-2014-0026

Waś, E., Szczęsna T., Rybak-Chmielewska H. (2015). Application of gas chromatography with the mass detector (GC-MS) technique for detection of beeswax adulteration with paraffin. Journal of Apicultural Science, 59(1), 143-152. http://doi.org/10.1515/JAS-2015-0015

White, J. W. Jr., & Kushnir, I. (1961). Analysis of Mixtures of Beeswax And Petroleum Waxes. American Bee Journal, 101(1).

White, J. W. Jr., Reader, M. K., Riethof, M. L. (1960). Chromatographic Determination of Hydrocarbons in Beeswax. Journal of the Association of Official Agricultural Chemists, 43, 778-780.

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information


IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 329 329 39
PDF Downloads 130 130 32