GC-MS investigation of the chemical composition of honeybee drone and queen larvae homogenate

Open access


Honeybee larva homogenate appears to be underrated and insufficiently explored but this homogenate is an exceptionally valuable honeybee product. Drone larva homogenate is very nutritional due to its high content of proteins, free amino acids, lipids, and carbohydrates. Moreover, the biological characteristics of honeybee larvae indicate the presence of chemical substances that may be pharmacologically active. In spite of the above, the chemical composition of honeybee larva has not gained as much attention as that of other bee products. In this study, the chemical composition of honeybee brood homogenate has been investigated using gas chromatography/mass spectrometry. As a result, it was possible to isolate as many as 115 extractive organic compounds from 6 samples of crude queen and 9 samples of drone homogenate. The main groups of substances extracted from either type of homogenate were composed of free amino acids and carbohydrates. The relative content of amino acids in queen homogenate as well as the share of essential amino acids were found to be higher than in the drone homogenate. Disaccharide trehalose was the dominant sugar in the queen larvae, whilst glucose prevailed in the drone larvae. Comparative chemical analyses of honeybee queen and drone larva homogenates have allowed us to make a preliminary inference about a higher overall value of the former.

Andriţoiu C. V., Andriţoiu V., Cuciureanu M., Nica- Badea D., Bibere N., & Popa M. (2014). Effect of apitherapy products against carbon tetrachlorideinduced toxicity in Wistar rats. Romanian Journal of Morphology & Embryology, 55(3), 835-847.

Balkanska R., Karadjova I., & Ignatova M. (2014). Comparative analyses of chemical composition of royal jelly and drone brood. Bulgarian Chemical Communications, 46, 412-416.

Bărnuţiu L.-I., Mărghitaş L., Dezmirean D., Bobiş O., Cristina Mihai C., & Crenguţa Pavel C. (2013). Physicochemical composition of Apilarnil (bee drone larvae). Lucrări Ştiinţifice-Seria Zootehnie, 59, 199-202.

Bogdanov S. (2015). Royal Jelly, Bee Brood: Composition, Health, Medicine: A Review. Bee Product Science, from www.bee-hexagon.net. April 2015.

Budnikova N. V. (2009). Biologically active compounds in drone brood. Pchelovodstvo, 6, 54-56 (in Russian).

Budnikova N. V. (2011). Development of the technology of honey bee drone production and storing. PhD Thesis. Divovo (in Russian).

Burmistrova L. (1999). Physico-chemical analysis and biochemical appreciation of drone brood. PhD Thesis, Ryazan Medical University (in Russian).

Finke M. D. (2005). Nutrient composition of bee brood and its potential as human food. Ecology of Food and Nutrition, 44, 257-270.

Gorpinchenko I. I., Dobrovol’skaya L. I., Mulyavko N. A., & Protas A. F. (2004). Drone homogenate in the medical treatment of man’s infertility. Man’s Health, 4, 61-63 (in Russian).

Iliescu V. N. (1993). Preparation based oh medical plants, bee product, apilarnil and pollen. Romanian Apicola, 1, 8-9.

Isidorov V. A., Bakier S., & Grzech J. (2012). Gas chromatographic- mass spectrometric investigation of volatile and extractable compounds of crude royal jelly. Journal of Chromatography B, 885-886, 109-116.

Isidorov V. A. (2015). Identification of Biologically and Environmentally Significant Organic Compounds. Mass spectra and Retention Indices Library of Trimethylsilyl Derivatives. Warsaw: PWN.

Krasovskaya S. V. (2011). Quantitative characterization of bee queen larvae homogenate for standardi zation and determination of the suitableness term. The Herald of Voronezh University. Ser.: Chemistry, Biology and Pharmacology, 2, 118-121 (in Russian).

Krell R. (1996). Vallue-added products from beekeeping. FAO Agricultural Service Bullein No 124, Chapter 8.

Lazaryan D. S. (2002). Comparative amino acids analysis in bee brood. Pharmaceutical Chemistry Journal, 36, 680-682.

Lazaryan D. S., Sotnikova E. M., & Evtushenko N. S. (2003). Standardization of bee brood homogenate composition. Pharmaceutical Chemistry Journal, 37, 614-616.

Mbaya J. S. K. (1996). Usages of bee products in folk medicine in Kenia. In: Bee products: Properties, application and apitherapy. Abstr. Intern. Conf. Tel Aviv, p. 98.

Meda A., Lamien Ch. E., Millogo J., Romito M., & Nacoulma O. G. (2004). Therapeutic uses of honey and honeybee larvae in central Burkina Faso. Journal of Ethnopharmacology, 95, 103-107.

Murav’ev D. V., & Kalachinskaya A. M. (2014). Drone homogenate and laying hens productivity. Herald of Kazan’ Agrarian University, 1, 130-134.

Mutsaers M., van Blitterswijk H., van’t Leven L., Kerkvliet, J., & van de Waerdt, J. (2005). Bee products: properties, processing and marketing. Wageningen: Agromisa Foundation, In: M. Mutsaers (Ed.), pp. 41-42.

Narumi S. (2004). Honeybee brood as a nutritional food. Mitsubachi Kagaku (Honeybee Science), 25, 119-124.

NIST Chemistry WebBook. (2013) National Institute of Standards and Technology, Gaitherburg, MD 20899, from http://webbook.nist.gov/chemistry.

PB-14. (2013). Oznaczanie zawartości tłuszczu metodą wagową. Wojewódzka Stacja Sanitarno- Epidemiologiczna w Białymstoku.

PB-44. (2011). Określanie zawartości białka metoda miareczkową. Wojewódzka Stacja Sanitarno-Epidemiologiczna w Białymstoku.

Pemberton R. W. (1999). Insects and other arthropods used as drugs in Korean traditional medicine. Journal of Ethnopharmacology 65, 207-216.

PN-A-79011-3. (1998). Koncentraty spożywcze. Metody badań. Oznaczanie zawartości wody. Warszawa: Polski Komitet Normalizacyjny.

PN-A-79011-6. (1998). Koncentraty spożywcze. Metody badań. Oznaczanie wartości kalorycznej. Warszawa: Polski Komitet Normalizacyjny.

PN-A-79011-8. (1998). Koncentraty spożywcze. Metody badań. Oznaczanie zawartości popiołu ogólnego. Warszawa: Polski Komitet Normalizacyjny.

PN-EN ISO 1736. (2008). Mleko w proszku i przetwory mleczne w proszku. Oznaczanie zawartości tłuszczu. Metoda grawimetryczna (Metoda odniesienia). Warszawa: Polski Komitet Normalizacyjny.

Posey D. A. (1986). Topics and issues in ethnoentomology with some suggestions for the development of hypothesis-generation and testing in ethnobiology. Journal of Ethnobiology, 6, 99-120.

Schmidt J.O., & Buchmann S.L. (1992). Other products of the hive. In: The hive and the honeybee J.M. Graham, ed. Dadant & Sons, Hamilton, Illinois, USA.

Seres A. B., Ducza E., Bathori M., Hunyadi A., Beni Z., Dekany M., & Gaspar R. (2013). Raw drone milk of honeybee elicits uterotrophic effect in rat: evidence for estrogenic activity. Journal of Medicinal Food, 16, 404-409.

Seres A.B., Ducza E., Báthori M., Hunyadi A., Béni Z., Dékány M., Hajagos-Tóth J., Verli J., & Gáspár R. (2014). Androgenic effect of honeybee drone milk in castrated rats: roles of methyl palmitate and methyl oleate. Journal of Ethnopharmacology, 153, 446-453.

Vasilenko Yu. K., Klimova I. I., & Lasaryan D. S. (2002). Biological effect of drone brood under chronic hy perlipidemia conditions. Pharmaceutical Chemistry Journal, 36, 434-436.

Vasilenko Yu. K., Klimova I. I., & Lasaryan D. S. (2005). A comparative study of the immunitropic and hepatotropic action of beekeeping products in rats with drug-induced hepatitis. Pharmaceutical Chemistry Journal, 39, 319-321.

Yücel B., Açikgöz Z., Bayraktar H., & Seremet C. (2011). The effect of Apilarnil (drone bee larvae) administration on growth performance and secondary sex characteristics of male broilers. Journal of Animal and Veterinary Advances, 10, 2263-2266.

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information

IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 435 36
PDF Downloads 195 195 28