Curcumin Stimulates Biochemical Mechanisms of Apis Mellifera Resistance and Extends the Apian Life-Span

Open access

Abstract

We examined the influence of curcumin-supplemented feeding on worker lifespan, Nosema resistance, key enzyme activities, metabolic compound concentrations and percentage of the global DNA methylation. Two worker groups (Apis mellifera) were set up: 1) control group; workers were fed ad libitum with sucrose syrup; 2) workers were fed with the syrup with the addition of curcumin. Dead workers were removed every two days and the Nosema spp. infection levels were assessed. Hemolymph was taken from living workers for biochemical analyses. The global DNA methylation level was analysed using DNA from worker heads and thoraces. The bees that consumed curcumin lived longer and were less infested with Nosema spp. The curcumin-treated workers had higher concentrations of proteins, non-enzymatic biomarkers (triglycerides, glucose, cholesterol, Mg2+ and Ca2+), uric acid and creatinine, as well as elevated activities of antioxidant enzymes (SOD , GPx, CAT , GST ), neutral proteases, protease inhibitors, enzymatic biomarkers (AST , ALT , ALP ). The concentrations of albumin and urea, and the activities of acidic and alkaline proteases were higher in the control group. Curcumin decreased global DNA methylation levels especially in older bees in which the natural, age-related level increase was observed. Most of the parameters increased over the apian youth and adulthood, and decreased in older bees. The decrease was markedly delayed in the bees fed with curcumin. Curcumin appeared to be an unexpectedly effective natural bio-stimulator, improving apian health and vitality. This multifactorial effect is caused by the activation of many biochemical processes involved in the formation of apian resistance.

Aebi H. (1983) Catalase. In: Bergmeyer H.V. (Ed.) Methods of enzymatic analysis. Verlag Chemie, Weinheim: 277-282.

Ak T., Gülçin İ. (2008) Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions 174: 27-37. DOI: 10.1016/j.cbi.2008.05.003

Amdam G. V. (2011) Social context, stress, and plasticity of ageing. Aging Cell 10: 18-27. DOI: 10.1111/j.1474-9726.2010.00647

Anand P., Thomas S., Kunnumakkara A., Sundaram C., Harikumar K., Sung B., Tharakan S., Misra K., Priyadarsini I., Rajasekharan K., Aggarwal B. (2008) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochemical Pharmacology 76: 1590-1611. DOI: 10.1016/j.bcp.2008.08.008

Anson M. (1938) The estimation of pepsin, tripsin, papain and cathepsin with hemoglobin. Journal of General Physiology 22: 79-84.

Arshami J., Pilevar M., Azghadi M., Raji A. (2012) Hypolipidemic and antioxidative effects of curcumin on blood parameters, humoral immunity, and jejunum histology in Hy-line hens. Avicenna Journal of Phytomedicine 3(2): 178-185.

Bajda M., Łoś A., Merska M. (2014) Effect of amphotericin B on the biochemical markers in the haemolymph of honey bees. Medycyna Weterynaryjna 70(12): 766-769.

Benzie I. F., Strain J. (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry 239: 70-76.

Bode W., Fernandez-Catalan C., Nagase H., Maskos K. (1999) Endoproteinase - protein inhibitor interaction. Acta Pathologica Microbiologica Immunologica Scandinavica 107: 3-10.

Burzyński S. R. (2006) Age management treatments which target silenced genes. In: Redberry G.W. (Ed.). Gene Silencing: New Research Nova Science Publishers. New York: 33-80.

Chance B., Maehly A. (1955) Assay of catalases and peroxidases. In: Colowick S., Kaplan N. (Eds.) Methods in Enzymology. Academic Press Inc. New York: 764-775.

Cheng H., Liu W., Ai X. (2005) Protective effect of curcumin on myocardial ischemial repertusion injury in rats. Zhong Yao Cai 28: 920-922.

Davies K. (1986) Intracellular proteolytic systems may function as secondary antioxidant defenses: An hypothesis. Journal of Free Radicals Biology and Medicine 2: 155-173.

Dhule S., Penfornis P., Frazier T., Walker R., Feldman J., Tan G., He J., Alb A., John V., Pochampally R. (2012) Curcuminloaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine: Nanotechnology, Biology, and Medicine 8: 440-451. DOI: 10.1016/j. nano.2011.07.011

El-Bahr S. (2013) Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in stretozotocin induced diabetic rats. BMC Complementary and Alternative Medicine 13: 368. DOI:10.1186/1472-6882-13-368

Evans J. D, Aronstein K., Chen Y., Hetru C., Imler J. L., Jiang H., Kanost M., Thompson G. J., Zou Z., Hultmark D. (2006) Immune pathways and defence mechanisms in honey bee Apis mellifera. Insect Molecular Biology 15(5): 645-656. DOI: 10.1111/j.1365-2583.2006.00682.x

Fan Z., Jing H., Yao J., Li Y., Hu X., Shao H., Shen G., Pan J., Luo F., Tian X. (2014) The protective effects of curcumin on experimental acute liver lesion induced by intestinal ischemia-reperfusion through inhibiting the pathway of NF-κB in a rat model. Oxidative Medicine and Cellular Longevity 2014: 191624. DOI: 10.1155/2014/191624

Flores K., Wolschin F., Amdam G. (2013) The role of methylation of DNA in environmental adaptation. Integrative and Compparative Biology 53(2): 359-372. DOI: 10.1093/icb/ict019

Frączek R., Żółtowska K., Lipiński Z., Dmitryjuk M. (2013) The mutual influence of protein from Varroa destructor extracts and from honeybee haemolymph on their proteolytic activity - in vitro study. Acta Parasitologica 58(3): 317-323. DOI: 10.2478/s11686-013-0144-8

Fu S., Kurzrock R. (2010) Development of curcumin as an epigenetic agent. Cancer 116(20): 4670-4676. DOI: 10.1002/cncr.25414

Grzywnowicz K., Ciołek A., Tabor A., Jaszek M. (2009) Profiles of the body-surface proteolytic system of honey bee queens, workers and drones: Ontogenetic and seasonal changes in proteases and their natural inhibitors. Apidologie 40(1): 4-19. DOI: 10.1051/apido:2008057

Joe B., Lokesh B. (1994) Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygene species in rat peritoneal macrophages. Biochemica Biophysica Acta 1224: 255-263.

Kuck D., Singh N., Lyko F., Medina-Franco J. (2010) Novel and selective DNA methyltransferase inhibitiors: Docking- based virtual screening and experimental evaluation. Bioorganic and Medicinal Chemistry 18: 822-829. DOI: 10.1016/j.bmc.2009.11.050

Kuszewska K., Woyciechowski M. (2014) Risky robbing is a job for short-lived and infected worker honeybees. Apidologie 45(5): 537-544. DOI: 10.1007/s13592-014-0267-4

Lee T., Lin Y. (1995) Trypsin inhibitor and trypsin - like protease activity in air - or submergence - grown rice (Oryza sativa L.) coleoptiles. Plant Science 106: 43-54.

Liu Z., Xie Z., Jones W., Pavlovicz R., Liu S., Yu J., Li P., Lin J., Fuchs J., Marcucci G., Li C., Chan K. (2009) Curcumin is a potent DNA hypomethylation agent. Bioorganic and Medicinal Chemistry Letters 19: 706-709. DOI: 10.1016/j. bmcl.2008.12.041

Lyko F., Maleszka R. (2011) Insects as innovative models for functional studies of DNA methylation. Trends in Genetics 27: 127-164. DOI: 10.1016/j.tig.2011.01.003

Marathe S., Sen M., Dasgupta I., Chakravortty D. (2012) Differential modulation of intracellular survival of cytosolic and vacuolar pathogens by curcumin. Antimicrobial Agents and Chemotherapy 56(11): 5555-5567. DOI: 10.1128/AAC.00496-12.

Masuda T., Maekawa T., Hidaka K., Bando H., Tekada Y., Yamaguchi H. (2001) Chemical studies on antioxidant mechanisms of curcumin: analysis of oxidative coupling products from curcumin and linolate. Journal of Agricultural and Food Chemistry 49: 2539-2547. DOI: 10.1021/ jf001442x

Moghadamtousi S., Kadir H., Hassandarvish P., Tajik H. Abubakar S., Zandi K. (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International 2014: 186864. DOI: 10.1155/2014/186864

Murugan P., Pari L. (2007) Influence of tetrahydrocurcumin on hepatic and renal functional markers and protein levels in experimental type 2 diabetic rats. Basic & Clinical Pharmacology & Toxicology 101: 241-245. DOI: 10.1111/j.1742-7843.2007.00109.x

Münch D., Amdam G., Wolschin F. (2008) Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee. Functional Ecology 22(3): 407-421. DOI: 10.1111/j.1365-2435.2008.01419.x

Podczasy J., Wei R. (1988) Reduction of iodonitrotetrazolium violet by superoxide radicals. Biochemical and Biophysical Research Communications 150: 1294-1301.

Pohorecka K., Bober A., Skubida M., Zdańska D. (2011) Epizootic status of apiaries with massive losses of bee colonies (2008-2009). Journal of Apicultural Science 55: 137-150.

Ranadive P., Mehta A., George S. (2011) Rational selection and screening of mutant strains of Sporidiobolus johnsonii - ATCC 20490 for improved production of Coenzyme Q10. International Conference on Life Science and Technology, IPCBEE 3: 141-145.

Reuter S., Gupta S., Park B., Goel A., Aggarwal B. (2011) Epigenetic changes induced by curcumin and other natural compounds. Genes and Nutrition 6: 93-108. DOI: 10.1007/s12263-011-0222-1

Rosenkranz P., Aumeier P., Ziegelmann B. (2010) Biology and control of Varroa destructor. Journal of Invertebrate Pathology 103: 96-119. DOI: 10.1016/j.jip.2009.07.016

Russell S., Barron A., Harris D. (2013) Dynamic modelling of honey bee (Apis mellifera) colony growth and failure. Ecological Modelling 265: 158-169. DOI:10.1016/j.ecolmodel. 2013.06.005

Salmon A., Richardson A., Pérez V. (2010) Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging? Free Radical Biology & Medicine 48: 642-655. DOI: 10.1016/j.freeradbiomed. 2009.12.015

SAS Version 9.13 (2002-2003) SAS Institute Inc. Cary, NC, USA.

Schacterle G., Pollack R. (1973) Simplified method for quantitative assay of small amounts of protein in biological material. Analytical Biochemistry 51: 654-655.

Seo K., Choi M., Kim H., Yeo J., Jeon S., Lee M. (2008) Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Molecular Nutrition and Food Research 52. DOI: 10.1002/mnfr.200700184.

Sharma R., Gescher A., Steward W. (2005) Curcumin: The story so far. European Journal of Cancer 41: 1955-1968. DOI:10.1016/j.ejca.2005.05.009

Soliman M., Nasson M., Ismail T. (2014) Immunohistochemical and molecular study on the protective effect of curcumin against hepatic toxicity induced by paracetamol in Wistar rats. BMC Complementary and Alternative Medicine 14: 457. DOI: 10.1186/1472-6882-14-457

Strachecka A., Gryzińska M., Krauze M. (2010) The influence of environmental pollution on the protective proteolytic barrier of the honey bee Apis mellifera mellifera. Polish Journal of Environmental Studies 19: 855-859.

Strachecka A., Gryzińska M., Krauze M., Grzywnowicz K. (2011) Profile of the body surface proteolytic system in Apis mellifera queens. Czech Journal of Animal Science 56: 15-22.

Strachecka A., Krauze M., Olszewski K., Borsuk G., Paleolog J., Merska M., Chobotow J., Bajda M., Grzywnowicz K. (2014a) Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochemistry (Moscow) 79(11): 1192-1201. DOI: 10.1134/ S0006297914110066

Strachecka A., Olszewski K., Paleolog J., Borsuk G., Bajda M. (2014b) Coenzyme Q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera. Archives of Insect Biochemistry and Physiology 86(3): 165-179. DOI: 10.1002/ arch.21159

Teiten M., Dicato M., Diederich M. (2013) Curcumin as a regulator of epigenetic events. Molecular Nutrition and Food Research. DOI: 10.1002/mnfr.201300201

Trujillo J., Chirino Y., Molina-JijOn E., Andérica-Romero A., Tapia E., Pedraza-Chaverri J. (2013) Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology 1: 448-456. DOI: 10.1016/j.redox.2013.09.003

Warholm M., Guthenberg C., von Bahr C., Mannervik B. (1985) Glutathione transferases from human liver. Methods Enzymology 113: 499-504.

Weirich G., Collins A., Williams V. (2002) Antioxidant enzymes in the honey bee Apis mellifera. Apidologie 33: 3-14.

Wilken R., Veena M., Wang M., Srivatsan E. (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular Cancer 10:12. DOI: 10.1186/1476-4598-10-12.

Ye M., Li Y., Yin H., Zhang J. (2012) Curcumin: updated molecular mechanisms and intervention target in human lung cancer. International Journal of Molecular Sciences 13: 3959-3978.

Yu W., Xu G., Ren G., Xu X., Yuan H., Qi X., Tian K. (2011) Preventive action of curcumin in experimental acute pancreatitis in mouse. Indian Journal of Medical Research 134(5): 717-724.

Zhang D., Fu M., Gao S., Liu J. (2013) Curcumin and diabetes: a systematic review. Evidence-Based Complementary and Alternative Medicine 2013: 636053. DOI: 10.1155/2013/636053

Zhao S., Li Q., Liu Z., Wang J., Wang X., Qin M., Wen Q. (2011) Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation. Hepatogastroenterology 58(112): 2106-2111. DOI: 10.5754/ hge11219

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information


IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 254 254 21
PDF Downloads 122 122 6