Differential Scanning Calorimetry for Determining the Thermodynamic Properties of Selected Honeys

Open access

Abstract

Thermodynamic properties of selected honeys: glass transition temperature (Tg), the change in specifi c heat capacity (ΔCp), and enthalpy (ΔH) were analysed using differential scanning calorimetry (DSC) in relation to the composition i.e. water and sugar content. Glass transition temperatures (Tg) of various types of honey differed significantly (p<0.05) and ranged from -49.7°C (polyfloral) to -34.8°C (sunflower). There was a strong correlation between the Tg values and the moisture content in honey (r = -0.94). The degree of crystallisation of the honey also influenced the Tg values. It has been shown that the presence or absence of sugar crystals influenced the glass transition temperature. For the decrystallised honeys, the Tg values were 6 to 11°C lower than for the crystallised honeys. The more crystallised a honey was, the greater the temperature difference was between the decrystallised and crystallized honey. In conclusion, to obtain reliable DSC results, it is crucial to measure the glass transition after the complete liquefaction of honey.

Al-Habsi N. A., Davis F. J., Niranjan K. (2013) Determine Crystalline Glucose Content of Honey Based on DSC, HPLC, and Viscosity Measurements, and Their Use to Examine the Setting Propensity of Honey. Journal of Food Science 78(6): 845-852.

AOAC (1995) Offi cial Methods of Analysis, 15th edn. Association of Official Analytical Chemists. Washington, DC.

Assil H. I., Sterling R., Sporns P. (1991) Crystal control in processed liquid honey. Journal of Food Science 56: 1034-1037.

Bogdanov S., Ruoff K., Persano Oddo L. (2004) Physicochemical methods for the characterization of unifl oral honeys: a review. Apidologie 35: 4-17.

Bogdanov S., Martin P., Lüllmann C., Borneck R., Flamini C., Morlot M., Heretier J., Vorwohl G., Russmann H., Persano- Oddo L., Sabatini A. G., Marcazzan G. L., Marioleas P., Tsigouri K., Kerkvliet J., Ortiz A., Ivanov T. (1997) Harmonised methods of the European Honey Commission. Apidologie, extra issue: 1-59.

Cavia M. M., Fernández-Muiño M. A., Gömez-Alonso E., Montes-Pérez M. J., Huidobro J. F., Sancho M. T. (2002) Evolution of fructose and glucose in honey over one year, infl uence of induced granulation. Food Chemistry 78: 157-161.

Cordella C., Faucon J. P., Cabrol-Bass D., Sbirrazzuoli N. (2003) Application of DSC as a tool for honey fl oral species characterization and adulteration detection. Journal of Thermal Analysis and Calorimetry 71: 279-290.

Cordella C., Antinelli J. F, Aurieres C., Faucon J. P, Cabrol- Bass D., Sbirrazzuoli N. (2002) Use of Differential Scanning Calorimetry (DSC) as a New Technique for Detection of Adulteration in Honeys. 1. Study of Adulteration Effect on Honey Thermal Behavior. Journal of Agricultural and Food Chemistry 50: 203-208.

Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Communities L10: 47-52.

Devillers J., Morlot M., Pham-Delčgue M. H., Doré J. C. (2004) Classification of monofloral honeys based on their quality control data. Food Chemistry 86: 305-312.

Escuredo O., Dobre I., Fernández-González M. M., Seijo C. (2014) Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chemistry 149: 84-90.

Isidorov V. A, Czyżewska U., Jankowska E., Bakier S. (2011) Determination of royal jelly acids in honey. Food Chemistry 124: 387-391.

Juszczak L., Fortuna T. (2006) Rheology of selected Polish honeys. Journal of Food Engineering 75: 43-49.

Kantor Z., Pitsi G., Thoen J. (1999) Glass transition temperature of honey as function of water content as determined by differential scanning calorimetry. Journal of Agricultural and Food Chemistry 47: 2327-2330.

Lazaridou A., Biliaderis C. G., Bacandritsos N., Sabatini A. G. (2004) Composition, thermal and rheological behavior of selected Greek honeys. Journal of Food Engineering 64: 9-21.

Lupano C. E. (1997) DSC study of honey granulation stored at various temperatures. Food Research International 30(9): 683-688.

Mora-Escobedo R., Moguel-Ordóňez Y., Jarmillo-Flores M. E., Gutiérrez-López G. F. (2006) The composition, rheological and thermal properties of tajonal (Viguiera denata) mexican honey. International Journal Food Properties 9: 299-316.

Oroian M., Amariei S., Escriche I., Gutt G. (2013) Rheological aspects of Spanish honeys. Food and Bioprocess Technology 6: 228-241.

Persano Oddo L., Piro R. (2004) Main European unifl oral honeys: descriptive sheets. Apidologie 35: S38-S81.

PN-88/A-77626 (1998) “Miód pszczeli”. Dziennik Norm i Miar nr 8. Wydawnictwo Normalizacyjne Alfa.

Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 14.01.2009 r. w sprawie metod związanych z dokonaniem oceny miodu. Dz. U. Nr 17 poz. 94.

Samborska K., Czelejewska M. (2014) the infl uence of thermal treatment and spray drying on the physicochemical properties of polish honeys. Journal of Food Processing and Preservation 38: 413-419.

Slade L., Levine H. (1991) Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition 30: 115-360.

Sopade P. A., Halley P. J., D’Arcy B. R. (2006) Specific heat capacity of Australian honeys from 35 to 165c as a function of composition using differential scanning calorimetry. Journal of Food Processing and Preservation 30: 99-109.

Statistica 10.0. Stat soft Inc. Tulsa, OK, USA.

Tonon R. V., Baroni A. F., Brabet C., Gibert O., Pallet D., Hubinger M. D. (2009) Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart.) juice. Journal of Food Engineering 94: 215-221.

Tosi E., Ciappini M., Lucero H., Re´ E. (2002) Honey thermal treatment effects on hydroxymethylfurfural content. Food Chemistry 77: 71-74.

Venir E., Spaziani M., Maltini E. (2010) Crystallization in „Tarassaco” Italian honey studied by DSC. Food Chemistry 122: 410-415.

Wedmore E. B. (1955) The accurate determination of the water content of honeys I. Introduction and results. Bee Word 36(11): 197-206.

Yardibi M. F., Gumus T. (2010) Some physico-chemical characteristics of honeys produced from sunflower plant (Helianthus annuus L.). International Journal of Food Science and Technology 45: 707-712.

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

Journal Information


IMPACT FACTOR 2017: 0.75
5-year IMPACT FACTOR: 1.007

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.345
Source Normalized Impact per Paper (SNIP) 2017: 0.461

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 399 399 36
PDF Downloads 189 189 15